Conical Microstructure Flexible High-Sensitivity Sensing Unit Adopting Chemical Corrosion.

Sensors (Basel)

Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Ministry of Education, Taiyuan 030051, China.

Published: August 2020

Sensor technology is one of the three pillars of information technology. This paper aims to discuss the problems of insensitive detection, poor stability, and uncomfortable wearing of sensors in the fields of human-computer interaction, 5G communication, and medical detection. A sensing unit with a microstructured flexible sensing front end is a cone-like structure with a single size of 18-22 μm. They are evenly distributed and can reach 2500 units per square millimeter. In the pressure range, the sensitivity of the sensor unit is 0.6 KPa (no microstructure sensitivity at 0.15 KPa), and the response time is fast (<600 ms). After 400 repeated stretching experiments, the sensor unit can still maintain a stable output signal. Due to its flexible characteristics (50% tensile conductivity), the sensor unit can act on human skin and other curved surfaces. According to the prepared sensing unit, good test results can be obtained on the testing of mechanical devices, curved surfaces of human bodies, and non-contact methods. It is observed that the flexible sensor can be applied to various test occasions, and the manufacturing process of the sensing unit will provide new ideas and methods for the preparation of the flexible sensor technology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472029PMC
http://dx.doi.org/10.3390/s20164613DOI Listing

Publication Analysis

Top Keywords

sensing unit
8
conical microstructure
4
microstructure flexible
4
flexible high-sensitivity
4
high-sensitivity sensing
4
unit adopting
4
adopting chemical
4
chemical corrosion
4
corrosion sensor
4
sensor technology
4

Similar Publications

Purpose: With the widespread introduction of dual energy computed tomography (DECT), applications utilizing the spectral information to perform material decomposition became available. Among these, a popular application is to decompose contrast-enhanced CT images into virtual non-contrast (VNC) or virtual non-iodine images and into iodine maps. In 2021, photon-counting CT (PCCT) was introduced, which is another spectral CT modality.

View Article and Find Full Text PDF

Background: Advancements in medical science have focused largely on patient care, often overlooking the well-being of health care professionals (HCPs). This oversight has consequences; not only are HCPs prone to mental and physical health challenges, but the quality of patient care may also endure as a result. Such concerns are also exacerbated by unprecedented crises like the COVID-19 pandemic.

View Article and Find Full Text PDF

Prolyl hydroxylase domain 2 (PHD2) is the primary oxygen sensing enzyme involved in hydroxylation of hypoxia-inducible factor (HIF). Under normoxic conditions, PHD2 hydroxylates specific proline residues in HIF-1α and HIF-2α, promoting their ubiquitination and subsequent proteasomal degradation. Although PHD2 activity decreases in hypoxia, notable residual activity persists, but its function in these conditions remains unclear Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) targets proteins with phosphorylated serine/threonine-proline (pSer/Thr-Pro) motifs.

View Article and Find Full Text PDF

Study on Highly Sensitive Capacitive Pressure Sensor Based on Silk Fibroin-Lignin Nanoparticles Hydrogel.

Biomacromolecules

January 2025

Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China.

Silk fibroin (SF) hydrogel has been proven to have excellent applications in the field of pressure sensors, but its sensing performance still needs improvement. A flexible hydrogel prepared from natural macromolecular materials was developed, and lignin nanoparticles (LNPs) were introduced during the preparation of the SF hydrogel. When LNPs account for 3% of SF, the sensing unit of the SF-LNPs hydrogel exhibits high stress sensitivity (1.

View Article and Find Full Text PDF

Background: High-frequency, high-intensity transcutaneous electrical nerve stimulation (HFHI TENS, i.e. 80 Hz and 40-60 mA) is an effective, fast-acting pain relief modality after elective surgery, offering pain relief within 5 min.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!