The members of the genus have great interest as traditional drugs in several folk systems including Turkey. In this sense, the present paper was aimed to explore the biological properties and chemical profiles of different parts (aerial parts, leaves, flowers, stems, and roots) of subsp. . Antioxidant (radical quenching, reducing power, and metal chelating) and enzyme inhibitory (α-amylase and tyrosinase) effects were investigated for biological properties. Regarding chemical profiles, individual phenolic compounds were detected by LC-MS, as well as total amounts. The leaves extract exhibited the strongest antioxidant abilities when compared with other parts. However, flowers extract had the best metal chelating ability. Hyperoside, apigenin, p-coumaric, and ferulic acids were identified as main compounds in the tested parts. Regarding enzyme inhibitory properties, tyrosinase inhibitory effects varied from IC: 1.02 to 1.41 mg/mL. In addition, the best amylase inhibition effect was observed by leaves (3.36 mg/mL), followed by aerial parts, roots, stems, and flowers. As a result, from multivariate analysis, the tested parts were classified in three cluster. Summing up the results, it can be concluded that subsp. could be a precious source of natural bioactive agents in pharmaceutical, nutraceutical, and cosmeceutical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7464095 | PMC |
http://dx.doi.org/10.3390/biology9080231 | DOI Listing |
Stem Cells
January 2025
Medicine and Pharmacy Research Center, and Yantai Key Laboratory for Stem Cell Biology and Regenerative Medicine, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong 264003, China.
Neural stem cells (NSCs) have great potentials in the application of neurodegenerative disease therapy, drug screening, and disease modeling. However, current approaches for induced NSCs (iNSCs) generation from somatic cells are still slow and inefficient. Here we establish a rapid and efficient method of iNSCs generation from human and mouse fibroblasts by single microRNAs (miR-302a).
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Laboratory Medicine, School of Medicine, Yangtze University, Jingzhou 434023, P.R. China.
Acylaminoacyl-peptide hydrolase (APEH), a serine peptidase that belongs to the prolyl oligopeptidase (POP) family, catalyzes removal of N-terminal acetylated amino acid residues from peptides. As a key regulator of protein N-terminal acetylation, APEH was involved in many important physiological processes while its aberrant expression was correlated with progression of various diseases such as inflammation, diabetics, Alzheimer's disease (AD), and cancers. However, while emerging attention has been attracted in APEH-related disease diagnosis and drug discovery, the mechanisms behind APEH and related disease progression are still unclear; thus, further investigating the physiological role and function of APEH is of great importance.
View Article and Find Full Text PDFReprod Biol Endocrinol
January 2025
Department of Molecular and Developmental Medicine, Siena University, Siena, 53100, Italy.
Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).
View Article and Find Full Text PDFBMC Bioinformatics
January 2025
School of Computer Science and Technology, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, China.
Background: Drug-drug interactions (DDIs) especially antagonistic ones present significant risks to patient safety, underscoring the urgent need for reliable prediction methods. Recently, substructure-based DDI prediction has garnered much attention due to the dominant influence of functional groups and substructures on drug properties. However, existing approaches face challenges regarding the insufficient interpretability of identified substructures and the isolation of chemical substructures.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates.
This study investigated the effects of non-thermal atmospheric plasma (NTAP) treatment on the growth, chemical composition, and biological activity of geranium (Pelargonium graveolens L'Herit) leaves. NTAP was applied at a frequency of 13.56 MHz, exposure time of 15 s, discharge temperature of 25 °C, and power levels (T1 = 50, T2 = 80, and T3 = 120 W).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!