Microwave synthesized iron oxide nanoparticles and microparticles were used to prepare a magnetically responsive biosorbent from moss for the rapid and efficient removal of Co ions and thioflavin T (TT). The biocomposite was extensively characterized using Fourier transformed infrared (FTIR), XRD, SEM, and EDX techniques. The magnetic biocomposite showed very good adsorption properties toward Co ions and TT e.g., rapid kinetics, high adsorption capacity (218 μmol g for Co and 483 μmol g for TT), fast magnetic separation, and good reusability in four successive adsorption-desorption cycles. Besides the electrostatic attraction between the oxygen functional moieties of the biomass surface and both Co and TT ions, synergistic interaction with the -FeOH groups of iron oxides also participates in adsorption. The obtained results indicate that the magnetically responsive biocomposite can be a suitable, easily separable, and recyclable biosorbent for water purification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7475912 | PMC |
http://dx.doi.org/10.3390/ma13163619 | DOI Listing |
Antioxidants (Basel)
December 2024
Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy.
Based on the established neuroprotective properties of indole-based compounds and their significant potential as multi-targeted therapeutic agents, a series of synthetic indole-phenolic compounds was evaluated as multifunctional neuroprotectors. Each compound demonstrated metal-chelating properties, particularly in sequestering copper ions, with quantitative analysis revealing approximately 40% chelating activity across all the compounds. In cellular models, these hybrid compounds exhibited strong antioxidant and cytoprotective effects, countering reactive oxygen species (ROS) generated by the Aβ(25-35) peptide and its oxidative byproduct, hydrogen peroxide, as demonstrated by quantitative analysis showing on average a 25% increase in cell viability and a reduction in ROS levels to basal states.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
Rare earth elements (REEs) are widely used in various high-tech industries. Developing affinity ligands that can detect and distinguish REEs is at the forefront of analytical chemistry. It is also interesting to understand the limits of natural biomolecules for the recognition of REEs.
View Article and Find Full Text PDFBioorg Chem
December 2024
Henan Province Key Laboratory of New Opto-electronic Functional Materials, Anyang Normal University, Anyang, Henan 455000, China. Electronic address:
β-Amyloid (Aβ) peptides are believed as the diagnostic biomarkers and therapeutic targets of Alzheimer's disease (AD). Their complexes with copper ions can catalyze the generation of reactive oxygen species (ROS) to further promote neuronal death. Herein, we suggested that porphyrin-substituted phenylalanine-phenylalanine nanoparticles (TPP-FF NPs) could inhibit the aggregation of Aβ monomers, disassemble the fibrillar Aβ aggregates under light illumination, and depressing the Cu-induced generation of ROS.
View Article and Find Full Text PDFBiochem Biophys Rep
December 2024
Laboratory of Biochemistry, School of Pharmacy, Nihon University, Narashinodai, Funabashi, Chiba, 274-8555, Japan.
Tau is typically an axonal protein, but in neurons of brains affected by Alzheimer's disease (AD), aggregation of hyperphosphorylated tau in the somatodendritic compartment causes neuronal death. We have previously demonstrated that tau mRNA is transported within dendrites and undergoes immediate translation and hyperphosphorylation of AD epitopes in response to NMDA receptor stimulation. Although this explains the emergence of hyperphosphorylated tau in dendrites, the relationship between tau hyperphosphorylation and aggregation is not well understood.
View Article and Find Full Text PDFProg Nucl Magn Reson Spectrosc
December 2024
Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom. Electronic address:
Amyloid fibrils are insoluble, fibrous nanostructures that accumulate extracellularly in biological tissue during the progression of several human disorders, including Alzheimer's disease (AD) and type 2 diabetes. Fibrils are assembled from protein monomers via the transient formation of soluble, cytotoxic oligomers, and have a common molecular architecture consisting of a spinal core of hydrogen-bonded protein β-strands. For the past 25 years, NMR spectroscopy has been at the forefront of research into the structure and assembly mechanisms of amyloid aggregates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!