Ibuprofen, a non-steroidal anti-inflammatory pain reliever, is among pharmaceutical residues of environmental concern ubiquitously detected in wastewater effluents and receiving rivers. Thus, ibuprofen removal potentials and associated bacteria in the hyporheic zone sediments of an impacted river were investigated. Microbially mediated ibuprofen degradation was determined in oxic sediment microcosms amended with ibuprofen (5, 40, 200, and 400 µM), or ibuprofen and acetate, relative to an un-amended control. Ibuprofen was removed by the original sediment microbial community as well as in ibuprofen-enrichments obtained by re-feeding of ibuprofen. Here, 1-, 2-, 3-hydroxy- and carboxy-ibuprofen were the primary transformation products. Quantitative real-time PCR analysis revealed a significantly higher 16S rRNA abundance in ibuprofen-amended relative to un-amended incubations. Time-resolved microbial community dynamics evaluated by 16S rRNA gene and 16S rRNA analyses revealed many new ibuprofen responsive taxa of the Acidobacteria, Actinobacteria, Bacteroidetes, Gemmatimonadetes, Latescibacteria, and Proteobacteria. Two ibuprofen-degrading strains belonging to the genera and were isolated from the ibuprofen-enriched sediments, consuming 400 and 300 µM ibuprofen within three and eight days, respectively. The collective results indicated that the hyporheic zone sediments sustain an efficient biotic (micro-)pollutant degradation potential, and hitherto unknown microbial diversity associated with such (micro)pollutant removal.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7464344PMC
http://dx.doi.org/10.3390/microorganisms8081245DOI Listing

Publication Analysis

Top Keywords

hyporheic zone
12
zone sediments
12
16s rrna
12
ibuprofen
10
ibuprofen degradation
8
µm ibuprofen
8
relative un-amended
8
microbial community
8
degradation associated
4
associated bacterial
4

Similar Publications

The One Health concept, although formulated two decades ago, remains challenging to implement. It necessitates the integration of numerous scientific disciplines, diverse techniques and various professional expertise. Furthermore, it often requires the collaboration of different institutions, encompassing both scientific and administrative entities.

View Article and Find Full Text PDF

The influence of surface-groundwater interactions on nutrient dynamics in urban in-channel treatment systems.

Environ Monit Assess

December 2024

Department of Civil and Natural Resources Engineering, University of Canterbury, Private Bag 4800, 8140, Christchurch, New Zealand.

In-channel water treatment systems remove excess nutrients through biological, chemical, and physical processes associated with the hyporheic zone. However, the impact of surface and groundwater interactions on these treatment processes is poorly understood. This research aims to assess the influence of varying groundwater conditions (neutral, drainage water, and groundwater seepage) and different bed sediment hydraulic conductivities on nitrogen and phosphorus dynamics in in-channel treatment systems.

View Article and Find Full Text PDF

Road salt chloride exposure in urban streambeds and links to groundwater - surface water interactions and salt sources.

Sci Total Environ

December 2024

Department of Civil and Environmental Engineering, Western University, 1151 Richmond St., London, Ontario N6A 3K7, Canada; Water Science and Technology Directorate, Environment and Climate Change Canada, 867 Lakeshore Rd., Burlington, Ontario L7S 1A1, Canada.

Groundwater transport of chloride (Cl) containing road salt deicers is an important contributor to salinization of fresh surface waters in temperate climates. While mass loading of salt to streams via groundwater has received greater recognition lately, only a few studies have demonstrated the unique risk posed by the direct discharge of salt-laden groundwater to aquatic life residing in the benthic zone (e.g.

View Article and Find Full Text PDF

The relationship between riparian vegetation buffer size and unionid mussel habitats.

Sci Total Environ

December 2024

Physical Ecology Laboratory, Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada. Electronic address:

The effectiveness of riparian vegetation buffers at conserving hyporheic habitats used by freshwater unionid mussels is not well understood. A comparison of sites with intact vs. fragmented vegetation buffers in the east branch of the Sydenham River (Ontario, Canada) revealed differences.

View Article and Find Full Text PDF

Current research status on the distribution and transport of micro(nano)plastics in hyporheic zones and groundwater.

J Environ Sci (China)

May 2025

Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China. Electronic address:

Article Synopsis
  • Micro(nano)plastics are emerging pollutants found in hyporheic zones and groundwater around the world, raising concerns about their environmental impact.
  • Recent research has explored their sources, distribution, and transport mechanisms, but a comprehensive theoretical framework for understanding their behavior in these systems is still lacking.
  • This review synthesizes current knowledge on micro(nano)plastic pollution, categorizes transport mechanisms into mechanical, physicochemical, and biological processes, and suggests directions for future research to better understand their cycles and interactions in groundwater ecosystems.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!