Restoration and Calibration of Tilting Hyperspectral Super-Resolution Image.

Sensors (Basel)

Key Laboratory of 3D Information Acquisition and Application, Ministry of Education, Capital Normal University, Beijing 100048, China.

Published: August 2020

Tilting sampling is a novel sampling mode for achieving a higher resolution of hyperspectral imagery. However, most studies on the tilting image have only focused on a single band, which loses the features of hyperspectral imagery. This study focuses on the restoration of tilting hyperspectral imagery and the practicality of its results. First, we reduced the huge data of tilting hyperspectral imagery by the -value sparse matrix band selection method (). Then, we restored the reduced imagery by optimal reciprocal cell combined modulation transfer function (MTF) method. Next, we built the relationship between the restored tilting image and the original normal image. We employed the least square method to solve the calibration equation for each band. Finally, the calibrated tilting image and original normal image were both classified by the unsupervised classification method (K-means) to confirm the practicality of calibrated tilting images in remote sensing applications. The results of classification demonstrate the optimal reciprocal cell combined MTF method can effectively restore the tilting image and the calibrated tiling image can be used in remote sensing applications. The restored and calibrated tilting image has a higher resolution and better spectral fidelity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472305PMC
http://dx.doi.org/10.3390/s20164589DOI Listing

Publication Analysis

Top Keywords

tilting image
20
hyperspectral imagery
16
tilting hyperspectral
12
calibrated tilting
12
tilting
10
image
9
higher resolution
8
optimal reciprocal
8
reciprocal cell
8
cell combined
8

Similar Publications

Background: Luminal and hemodynamic evaluations of the cervical arteries inform the diagnosis and management of patients with cervical arterial disease.

Purpose: To demonstrate a 3D nonenhanced quantitative quiescent interval slice-selective (qQISS) magnetic resonance angiographic (MRA) strategy that provides simultaneous hemodynamic and luminal evaluation of the cervical arteries.

Study Type: Prospective.

View Article and Find Full Text PDF

Achieving atomic-level characterization of the diamond (001) surface has been a persistent goal over recent decades. This pursuit aims to understand the smooth growth of diamonds and investigate surface defects and adsorbates relevant to applications. However, the inherently low conductivity and the short C-C bonds present significant challenges for atomic resolution imaging.

View Article and Find Full Text PDF

To achieve high-precision 3D reconstruction, a comprehensive improvement has been made to the binocular structured light calibration method. During the calibration process, the calibration object's imaging quality and the camera parameters' nonlinear optimization effect directly affect the caibration accuracy. Firstly, to address the issue of poor imaging quality of the calibration object under tilted conditions, a pixel-level adaptive fill light method was designed using the programmable light intensity feature of the structured light projector, allowing the calibration object to receive uniform lighting and thus improve the quality of the captured images.

View Article and Find Full Text PDF

Oblique plane microcopy (OPM), a variant of light-sheet fluorescence microscopy (LSFM), enables rapid volumetric imaging without mechanically scanning the sample or an objective. In an OPM, the sample space is mapped to a distortion free image space via remote focusing, and the oblique light-sheet plane is mapped via a tilted tertiary imaging system onto a camera. As a result, the 3D point-spread function and optical transfer function are tilted to the optical axis of the tertiary imaging system.

View Article and Find Full Text PDF

Purpose: This study aimed to evaluate the quality of clinically indicated digital dental panoramic radiographs (DPRs) of children with mixed dentition. Despite the likely widespread use of this modality, recent research detailing errors on DPRs is scarce.

Materials And Methods: A consecutive case series was performed, including 178 DPRs from patients aged 6 to 12 years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!