Polymeric membranes based on the semi-crystalline syndiotactic-polystyrene (sPS) become hydrophilic, and therefore conductive, following the functionalization of the amorphous phase by the solid-state sulfonation procedure. Because the crystallinity of the material, and thus the mechanical strength of the membranes, is maintained and the resistance to oxidation decomposition can be improved by doping the membranes with fullerenes, the sPS becomes attractive for proton-exchange membranes fuel cells (PEMFC) and energy storage applications. In the current work we report the micro-structural characterization by small-angle neutron scattering (SANS) method of sulfonated sPS films and sPS-fullerene composite membranes at different temperatures between 20 °C and 80 °C, under the relative humidity (RH) level from 10% to 70%. Complementary characterization of membranes was carried out by FTIR, UV-Vis spectroscopy and prompt-γ neutron activation analysis in terms of composition, following the specific preparation and functionalization procedure, and by XRD with respect to crystallinity. The hydrated ionic clusters are formed in the hydrated membrane and shrink slightly with the increasing temperature, which leads to a slight desorption of water at high temperatures. However, it seems that the conductive properties of the membranes do not deteriorate with the increasing temperature and that all membranes equilibrated in liquid water show an increased conductivity at 80 °C compared to the room temperature. The presence of fullerenes in the composite membrane induces a tremendous increase in the conductivity at high temperatures compared to fullerenes-free membranes. Apparently, the observed effects may be related to the formation of additional hydrated pathways in the composite membrane in conjunction with changes in the dynamics of water and polymer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7466101PMC
http://dx.doi.org/10.3390/membranes10080187DOI Listing

Publication Analysis

Top Keywords

membranes
10
increasing temperature
8
high temperatures
8
composite membrane
8
effects temperature
4
temperature humidity
4
humidity microstructure
4
microstructure sulfonated
4
sulfonated syndiotactic-polystyrene
4
syndiotactic-polystyrene ionic
4

Similar Publications

The present study explores the conformational dynamics of the membrane protein of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) within the Endoplasmic Reticulum-Golgi Intermediate Compartment (ERGIC) complex using an all-atomistic molecular dynamics simulation approach. Significant structural changes were observed in the N-terminal, C-terminal, transmembrane, and beta-sheet sandwich domains of the MERS-CoV membrane protein. This study also highlights the structural similarities between the MERS-CoV and the SARS-CoV-2 membrane proteins, particularly in how both exhibit a distinct kink in the transmembrane helix caused by aromatic residue-lipid interactions.

View Article and Find Full Text PDF

Migrasome formation is initiated preferentially in tubular junctions by membrane tension.

Biophys J

January 2025

Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel. Electronic address:

Migrasomes, the vesicle-like membrane micro-structures, arise on the retraction fibers (RFs), the branched nano-tubules pulled out of cell plasma membranes during cell migration and shaped by membrane tension. Migrasomes form in two steps: a local RF bulging is followed by a protein-dependent stabilization of the emerging spherical bulge. Here we addressed theoretically and experimentally the previously unexplored mechanism of bulging of membrane tubular systems.

View Article and Find Full Text PDF

Comparative Analysis of Gelatin/Polylactic Acid and Commercial PLA Membranes for Guided Bone Regeneration: A Randomized Clinical Trial.

Med Sci Monit

January 2025

Department of Oral Implantology, The Affiliated Stomatology Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province Key Laboratory of Oral Biomedicine, Jiangxi Province Clinical Research Center for Oral Disease, Nanchang, Jiangxi, China.

BACKGROUND This study included 32 patients with single missing teeth and alveolar bone defects and aimed to compare outcomes from guided bone regeneration with a gelatin/polylactic acid (GT/PLA) barrier membrane and a Guidor® bioresorbable matrix barrier dental membrane. MATERIAL AND METHODS A total of 32 participants were recruited in the clinical study, with single missing teeth and alveolar bone defects, requiring guided bone regeneration (32 missing teeth in total). They were randomly divided into the GT/PLA membrane group (experimental) and Guidor® membrane group (control) by the envelope method (n=16).

View Article and Find Full Text PDF

A Novel cold-active chitin deacetylase from Shewanella psychrophila WP2 (SpsCDA) was overexpressed in Escherichia coli BL21 and employed for deacetylation of chitin to chitosan. The produced chitosan was characterized, and its antifungal activity was investigated against Fusarium oxysporum. The purified recombinant SpsCDA appeared as a single band on SDS-PAGE at approximately 60 kDa, and its specific activity was 92 U/mg.

View Article and Find Full Text PDF

Mitochondrial membrane protein-associated neurodegeneration (MPAN) is a rare neurodegenerative disorder characterized by spastic paraplegia, parkinsonism and psychiatric and/or behavioral symptoms caused by variants in gene encoding chromosome-19 open reading frame-12 (C19orf12). We present here seven patients from six unrelated families with detailed clinical, radiological, and genetic investigations. Childhood-onset patients predominantly had a spastic ataxic phenotype with optic atrophy, while adult-onset patients were presented with cognitive, behavioral, and parkinsonian symptoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!