Bone plays an important role in dental implant treatment success. The goal of this literature review is to analyze the influence of bone definition and finite element parameters on stress in dental implants and bone in numerical studies. A search was conducted of Pubmed, Science Direct and LILACS, and two independent reviewers performed the data extraction. The quality of the selected studies was assessed using the Cochrane Handbook tool for clinical trials. Seventeen studies were included. Titanium was the most commonly-used material in dental implants. The magnitude of the applied loads varied from 15 to 300 N with a mean of 182 N. Complete osseointegration was the most common boundary condition. Evidence from this review suggests that bone is commonly defined as an isotropic material, despite being an anisotropic tissue, and that it is analyzed as a ductile material, instead of as a fragile material. In addition, and in view of the data analyzed in this review, it can be concluded that there is no standardization for conducting finite element studies in the field of dentistry. Convergence criteria are only detailed in two of the studies included in this review, although they are a key factor in obtaining accurate results in numerical studies. It is therefore necessary to implement a methodology that indicates which parameters a numerical simulation must include, as well as how the results should be analyzed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7464638 | PMC |
http://dx.doi.org/10.3390/biology9080224 | DOI Listing |
PLoS One
January 2025
Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China.
Purpose: The present study is to explore the appropriate plantar support force for its effect on improving the collapse of the medial longitudinal arch with flexible flatfoot.
Methods: A finite element model with the plantar fascia attenuation was constructed simulating as flexible flatfoot. The appropriate plantar support force was evaluated.
J Indian Prosthodont Soc
January 2025
Department of Prosthodontics, K M Shah Dental College and Hospital, Sumandeep Vidyapeeth, Vadodara, Gujarat, India.
Aim: The aim is to evaluate and compare stress distribution characteristics of ball, magnet, and positioned attachment systems in single and double implant-retained overdentures using the finite element method (FEM).
Setting And Design: In vitro (in silico study) finite element analysis (FEA).
Materials And Methods: A Styrofoam mandible with duplicated silicon mucosa was used to construct a mandibular complete denture.
Angew Chem Int Ed Engl
January 2025
Shanghai Normal University, Chemistry, No. 100, Guilin Road, 200234, Shanghai, CHINA.
The use of precious metals (PMs) in many areas, such as printed circuit boards, catalysts, and target drugs, is increasing due to their unique physical and chemical properties, but their recovery remains a great challenge in terms of zero-valent PMs as final product. We report a highly hydrophilic carbon dot (CD) as reductant (electron donor), the defects in CD served as efficient active sites for zero-valent PMs recovery with an electron-donating capacity is ~1.7 mmol g-1.
View Article and Find Full Text PDFHeliyon
November 2024
Department of Industrial Engineering and Automotive, Nebrija University, Santa Cruz de Marcendo 27, 28040, Madrid, Spain.
The use of numerical methods for structural analysis has been increasingly integrated within the design process in different engineering fields over the last decades, inasmuch as the capacity of the computing resources have growth. This gave rise to calculation techniques based on virtual models such as the finite element method, which is nowadays a reference method for evaluation of complex tubular structures with vast application in the industry. For such type of structures, modeling approaches based on beam type elements are usually employed since they provide simplicity and low computational costs.
View Article and Find Full Text PDFMath Mech Solids
January 2025
McMaster University, Hamilton, ON, Canada.
This paper deals with mesoscale analysis of masonry structures, which involves fracture propagation in brick units as well as along the masonry joints. The brick-mortar interfaces are incorporated in standard finite elements by employing a constitutive law with embedded discontinuity. Macrocracks in bricks are modelled in a discrete way using the same methodology, without any a-priori assumptions regarding their orientation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!