Multi-walled carbon nanotubes (MWCNTs) might induce the dysfunction of neuronal NO synthase (nNOS) and impair the function of brains. But to the best of our knowledge, this conclusion was made by using laboratory animals or conventional nerve cell cultures; however, these models might not reflect the complex conditions of human brains. Recently, the development of 3D brain organoids (also known as organotypic cultures) derived from human induced pluripotent stem cells (iPSCs) provides a platform to investigate the behaviors of human brains in vitro. In this study, we investigated the toxicity of MWCNTs to 3D brain organoids which expressed the cortical layer markers. It was shown that MWCNTs induced cytotoxicity to 3D brain organoids but not in dose-dependent manner. Exposure to high level of MWCNTs (64 μg/mL) reduced the levels of intracellular NO but increased superoxide. As the mechanism, 64 μg/mL MWCNTs significantly reduced the protein level of nNOS. The nNOS regulators nuclear factor kappa-B (NF-κB) proteins were significantly induced by MWCNTs, whereas Kruppel-like factor 4 (KLF4) proteins were reduced particularly after exposure to low level of MWCNTs (16 μg/mL). The results from fluorescence micro-optical sectioning tomography (MOST) confirmed the decrease of nNOS proteins, not only at the out-layers that directly contacted MWCNTs, but also at the inner-layers. Combined, our results suggested that MWCNTs could decrease nNOS activity by inducing oxidative stress and modulating NF-κB-KLF4 pathway. This study also showed the potential of 3D brain organoids in mechanism-based toxicology studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.141384 | DOI Listing |
Sci Rep
December 2024
Department of Neurosurgery, China Medical University Hospital, 2 Hsueh‑Shih Road, Taichung City, 40402, Taiwan, ROC.
Treating metastatic brain tumors remains a significant challenge. This study introduces and applies the Patient-Derived Tumor Spheroid (PDTS) system, an ex vivo model for precision drug testing on metastatic brain tumor. The PDTS system utilizes a decellularized extracellular matrix (dECM) derived from adipose tissue, combined with the tumor cells, to form tumor spheroids.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, 200032, China.
Focal cortical dysplasia (FCD) is a highly heterogeneous neurodevelopmental malformation, the underlying mechanisms of which remain largely elusive. In this study, personalized dorsal and ventral forebrain organoids (DFOs/VFOs) are generated derived from brain astrocytes of patients with FCD type II (FCD II). The pathological features of dysmorphic neurons, balloon cells, and astrogliosis are successfully replicated in patient-derived DFOs, but not in VFOs.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Zebrafish Translational Medical Research Center, Korea University, Ansan, Gyeonggi-do, Republic of Korea; Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea. Electronic address:
Citronellol is widely utilized in consumer products, including cosmetics, fragrances, and household items. However, despite being considered a relatively safe chemical, the health effects and toxicity mechanisms associated with exposure to high concentrations of citronellol, based on product content, remain inadequately understood. Here, we aimed to analyze the neurological effects of citronellol in zebrafish larvae using behavioral and histological analyses and elucidate the mechanisms underlying its neurotoxicity in vivo.
View Article and Find Full Text PDFCell Rep
December 2024
Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan. Electronic address:
During gestation, the choroid plexus (ChP) produces protein-rich cerebrospinal fluid and matures prior to brain development. It is assumed that ChP dysfunction has a profound effect on developmental neuropsychiatric disorders, such as autism spectrum disorder (ASD). However, the mechanisms linking immature ChP to the onset of ASD remain unclear.
View Article and Find Full Text PDFEur J Cell Biol
December 2024
Uehiro Division for Applied Ethics, Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan; Centre for Biomedical Ethics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan. Electronic address:
This study aims to provide a comprehensive review of the ethical, legal and social issues in human brain organoid research, with a view to different types of research and applications: in vitro research, transplantation into non-human animals, and biocomputing. Despite the academic and societal attention on the possibility that human brain organoids may be conscious, we have identified diverse issues in human brain organoid research and applications. To guide the complex terrain of human brain organoid research and applications, a multidisciplinary approach that integrates ethical, legal, and social perspectives is essential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!