Some rhizosphere bacteria could colonize on the root surface of plants, or even form biofilm to promote plant growth, enhance plant resistance to harsh external environments and block the soil contamination. In this study, to explore the effects of pyrene-degrading bacterium on root surface on plant uptake of pyrene, a pyrene-degrading bacterium Mycolicibacterium sp. Pyr9 was isolated from the root surface of Eleusine indica L. Gaertn. in PAH-contaminated fields; after antibiotic labeling, it was colonized onto the root surface of white clover (Trifolium repens L.), and its distribution and performance were monitored under different levels of pyrene contamination. Strain Pyr9 could degrade 98% of pyrene (with an initial concentration of 50 mg L) in culture solution within 8 d; it also owns a variety of plant growth promoting characteristics and appreciable tolerance to harsh environments. The transcription of pyrene catabolic genes in Pyr9 enhanced obviously when induced by pyrene. Pyr9 colonized and grew well on the root surface of white clover via root inoculation; some cells could even enter into the root tissues and move to the shoots. Compared with the Pyr9-free treatment, the pyrene contents in the roots and shoots of Pyr9-inoculated white clover decreased by 25%-30% and 33%-42%, respectively. Correspondingly, the pyrene accumulation and translocation factors in white clover decreased as well. These results indicate that Pyr9 would be a good potential to circumvent plant pyrene pollution. This research may provide a theoretical basis and technical support for the safety of agricultural products and human health in PAH-contaminated sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2020.127918 | DOI Listing |
Plants (Basel)
January 2025
Department of Biology, Faculty of Humanities and Natural Sciences, University of Prešov, 17 Novembra 1, 08001 Prešov, Slovakia.
Weeds cause a decrease in the quantity and quality of agricultural production and economic damage to producers. The prolonged use of synthetic pesticides causes problems of environmental pollution, the possible alteration of agricultural products and problems for human health. For this reason, the scientific community's search for products of natural origin, which are biodegradable, safe for human health and can act as valid alternatives to traditional herbicides, is growing.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Turf Science and Engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
White clover () is an excellent perennial cold-season ground-cover plant for municipal landscaping and urban greening. It is, therefore, widely distributed and utilized throughout the world. However, poor salt tolerance greatly limits its promotion and application.
View Article and Find Full Text PDFGene
January 2025
College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130 China. Electronic address:
White clover (Trifolium repens L.) is a high-quality leguminous forage, but its short rooting habit, poor transpiration tolerance, and drought tolerance, have become a key factor restricting its growth and cultivation. 1R-MYB transcription factors (TFs) are a significant subfamily of TFs in plants, playing a vital role in regulating plant responses to drought stress, however, knowledge about the role of 1R-MYB transcription factors in white clover is still limited.
View Article and Find Full Text PDFTheor Appl Genet
January 2025
Grasslands Research Centre, AgResearch Ltd, Private Bag 11008, Palmerston North, 4442, New Zealand.
Genomic selection using white clover multi-year-multi-site data showed predicted genetic gains through integrating among-half-sibling-family phenotypic selection and within-family genomic selection were up to 89% greater than half-sibling-family phenotypic selection alone. Genomic selection, an effective breeding tool used widely in plants and animals for improving low-heritability traits, has only recently been applied to forages. We explored the feasibility of implementing genomic selection in white clover (Trifolium repens L.
View Article and Find Full Text PDFHeliyon
July 2024
Department of Plant Pathology, University of Georgia, Tifton, GA, 31793, USA.
The resistance () gene family in plants is a vital component of the plant defense system, enabling host resistance against pathogens through interactions with pathogen effector proteins. These R genes often encode nucleotide-binding (NB-ARC or N) and leucine-rich-repeat (LRR or L) domains, collectively forming the NLR protein family. The NLR proteins have been widely explored in crops from and , but limited studies are available for crops in other families, including .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!