Penicillium oxalicum putative methyltransferase Mtr23B has similarities and differences with LaeA in regulating conidium development and glycoside hydrolase gene expression.

Fungal Genet Biol

State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, China; National Glycoengineering Research Center, Shandong University, No. 72 Binhai Road, Qingdao 266237, China. Electronic address:

Published: October 2020

Putative methyltranferase LaeA and LaeA-like proteins, which are conserved in many filamentous fungi, regulate the sporogenesis and biosynthesis of secondary metabolites. In this study, we reported the biological function of a LaeA-like methyltransferase, Penicillium oxalicum Mtr23B, which contains a methyltransf_23 domain and an S-adenosylmethionine binding domain, in controlling spore pigment formation and in the expression of secondary metabolic gene cluster and glycoside hydrolase genes. Additionally, we compared Mtr23B and LaeA, and determined their similarities and differences in terms of their roles in regulating the above biological processes. mtr23B had the highest transcriptional level among the 12 members of the methyltransf_23 family in P. oxalicum. The colony color of Δmtr23B (deletion of mtr23B) was lighter than that of ΔlaeA, although Δmtr23B produced ~ 19.2-fold more conidia than ΔlaeA. The transcriptional levels of abrA, abrB/yA, albA/wA, arpA, arpB, and aygA, which are involved in the dihydroxynaphtalene-melanin pathway, decreased in Δmtr23B. However, Mtr23B had a little effect on brush-like structures and conidium formation, and had a different function from LaeA. Mtr23B extensively regulated glycoside hydrolase gene expression. The absence of Mtr23B remarkably repressed prominent cellulase- and amylase-encoding genes in the whole culture period, while the effect of LaeA mainly occurred in the later phases of prolonged batch cultures. Similar to LaeA, Mtr23B was involved in the expression of 10 physically linked regions containing secondary metabolic gene clusters; the highest regulatory activities of Mtr23B and LaeA were observed in BrlA-dependent cascades. Although LaeA interacted with VeA, Mtr23B did not interact with VeA directly. We assumed that Mtr23B regulates cellulase and amylase gene transcription by interacting with the CCAAT-binding transcription factor HAP5 and chromatin remodeling complex.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fgb.2020.103445DOI Listing

Publication Analysis

Top Keywords

mtr23b
12
glycoside hydrolase
12
penicillium oxalicum
8
similarities differences
8
laea
8
hydrolase gene
8
gene expression
8
secondary metabolic
8
metabolic gene
8
mtr23b laea
8

Similar Publications

Penicillium oxalicum putative methyltransferase Mtr23B has similarities and differences with LaeA in regulating conidium development and glycoside hydrolase gene expression.

Fungal Genet Biol

October 2020

State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, China; National Glycoengineering Research Center, Shandong University, No. 72 Binhai Road, Qingdao 266237, China. Electronic address:

Putative methyltranferase LaeA and LaeA-like proteins, which are conserved in many filamentous fungi, regulate the sporogenesis and biosynthesis of secondary metabolites. In this study, we reported the biological function of a LaeA-like methyltransferase, Penicillium oxalicum Mtr23B, which contains a methyltransf_23 domain and an S-adenosylmethionine binding domain, in controlling spore pigment formation and in the expression of secondary metabolic gene cluster and glycoside hydrolase genes. Additionally, we compared Mtr23B and LaeA, and determined their similarities and differences in terms of their roles in regulating the above biological processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!