Physiological changes in the hemolymph of juvenile shrimp Litopenaeus vannamei to sublethal nitrite and nitrate stress in low-salinity waters.

Environ Toxicol Pharmacol

Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Unidad Académica Mazatlán, Mexico; Miembro de El Colegio de Sinaloa, Sinaloa, Mexico. Electronic address:

Published: November 2020

Juveniles of the shrimp Litopenaeus vannamei (3.3 ± 0.4 g) were exposed separately to nitrite (0.0, 1.1, 2.6, and 5.3 mg/L nitrogen as nitrite [NO-N]) and nitrate (0, 90, 225 and 400 mg/L nitrogen as nitrate [NO-N]) concentrations equivalent to 0, 10, 25, and 50% of the LC-96 h value of NO-N and NO-N in low salinity water (3 g/L). Shrimps responded to nitrite and nitrate according to changes in oxyhemocyanin, glucose, lactate and ion levels in the hemolymph after 6, 12, 24, and 48 h of exposure. Oxyhemocyanin levels decreased with increasing nitrite and nitrate levels and were higher at 50% exposure to the contaminants. Compared to the control, glucose and lactate increased significantly at 50% exposure to nitrite and nitrate, particularly at 12 and 24 h. Na in the hemolymph changed with nitrite and nitrate, while K only changed ˜with nitrite.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.etap.2020.103472DOI Listing

Publication Analysis

Top Keywords

nitrite nitrate
20
shrimp litopenaeus
8
litopenaeus vannamei
8
nitrite
8
glucose lactate
8
50% exposure
8
nitrate
7
physiological changes
4
changes hemolymph
4
hemolymph juvenile
4

Similar Publications

Alternative oxidase (AOX) regulates the level of reactive oxygen species and nitric oxide (NO) in plants. While under normoxic conditions it alleviates NO formation, there are several indications that in the conditions of low oxygen such as during seed germination before radicle protrusion, in meristematic stem cells, and in flooded roots AOX can be involved in the production of NO from nitrite. Whereas the first reports considered this role as indirect, more evidence is accumulated that AOX can act as a nitrite: NO reductase.

View Article and Find Full Text PDF

Little is known regarding the effects high-intensity training performed in hypoxia on the oxidative stress and antioxidant systems. The aim of this study was to assess the potential effect of 4 weeks of repeated sprint training in hypoxia (RSH) on the redox balance. Forty male well-trained cyclists were matched into two different interventions (RSH,  = 20) or in normoxia, RSN,  = 20) and tested twice (before (Pre-) and after (Post-) a 4-week of training) for performance (repeated sprint ability (RSA) test), oxidative stress, and antioxidant status.

View Article and Find Full Text PDF

Strain LCG007, isolated from Lu Chao Harbor's intertidal water, phylogenetically represents a novel genus within the family Rhodobacteraceae. Metabolically, it possesses a wide array of amino acid metabolic genes that enable it to thrive on both amino acids or peptides. Also, it could hydrolyze peptides containing D-amino acids, highlighting its potential role in the cycling of refractory organic matter.

View Article and Find Full Text PDF

Background: Monitoring nitrate and nitrite levels in water is vital for protecting human health, aquatic ecosystems, and regulatory compliance. However, traditional detection methods often involve environmentally harmful chemicals. This study introduces a sustainable alternative by leveraging metabolically engineered E.

View Article and Find Full Text PDF

Shifts of abundance and community composition of nitrifying microbes along the Changjiang Estuary to the East China Sea.

World J Microbiol Biotechnol

January 2025

Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China.

Nitrification, the oxidation of ammonium to nitrate via nitrite, links nitrogen fixation and nitrogen loss processes, playing key roles in coastal nitrogen cycle. However, few studies have simultaneously examined both ammonia-oxidizing and nitrite-oxidizing microbes. This work investigated the abundance and community structure of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and nitrite-oxidizing bacteria (NOB) using archaeal amoA gene, bacterial amoA gene, and NOB nxrB gene, respectively, through q-PCR and Sanger sequencing along the Changjiang Estuary salinity gradient.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!