Rifaximin (RFX) exhibit polymorphism and commercial formulation contains the α form. The polymorphic transformation of the RFX in the drug product have significant effect on the clinical outcome. The focus of present work was to understand effect of formulation component and manufacturing method, and exposure to stability condition on polymorphic stability and dissolution of RFX tablets. The RFX tablets containing 2.5, 5 and 10% glyceryl palmitostearate (GPS) were manufactured by direct-compression and wet-granulation followed by compression. Ethanol was used as a granulating solvent. The tablets were packed in pharmacy vials and exposed to 40 °C/75% RH for four weeks. The tablets were characterized for polymorphic form by X-ray powder diffraction (XRPD) and Fourier infrared spectroscopy (FTIR), assay and dissolution. Before exposure to stability condition, dissolution ranged from 78.0 ± 2.3 to 81.9 ± 3.5%, and 72.7 ± 2.0 and 75.9 ± 5.8% in directly compressed and ethanol-granulated formulations, respectively. GPS amount of 10% caused a decrease in dissolution albeit insignificant (p > 0.05). The polymorphic forms of RFX were α and γ in directly compressed and ethanol-granulated formulations, respectively. There was a decrease in dissolution rate and extent after exposure to 40 °C/75% RH in directly compressed formulations. On the other hand, only dissolution rate was affected in ethanol-granulated formulations. The dissolution ranged from 52.8 ± 2.0 to 70.0 ± 3.0% in directly compressed formulations after four weeks exposure to 40 °C/75% RH exposure. A decrease in dissolution was linked to polymorphic transformation of the drug and GPS in the formulations after exposure to stability condition. XRPD and FTIR data indicated α to β transformation in directly compressed formulations while no polymorphic change was observed in ethanol-granulated formulations. In conclusion, this study clearly showed effect of formulation and manufacturing variables, and stability exposure on the polymorphic stability and dissolution of RFX, which may have clinical ramification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2020.119785 | DOI Listing |
J Hand Surg Am
January 2025
Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
Carpal tunnel syndrome (CTS) is the most common compression neuropathy. The median nerve contains sensory, motor, and sympathetic fibers. Involvement of the different fibers of the median nerve in CTS may vary; hence, one of the sensory, motor, or autonomic dysfunctions may be dominant.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Laboratory of Mechanics of Biocompatible Materials and Devices, Perm National Research Polytechnic University, 614990 Perm, Russia.
Bone transplantation ranks second worldwide among tissue prosthesis surgeries. Currently, one of the most promising approaches is regenerative medicine, which involves tissue engineering based on polymer scaffolds with biodegradable properties. Once implanted, scaffolds interact directly with the surrounding tissues and in a fairly aggressive environment, which causes biodegradation of the scaffold material.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Department of Anatomy and Genetics, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia.
Bone metastases are a prevalent complication in advanced cancers, particularly in breast, prostate, and lung cancers, and are associated with severe skeletal-related events (SREs), including fractures, spinal cord compression, and debilitating pain. Conventional bone-targeted treatments like bisphosphonates and RANKL inhibitors (denosumab) reduce osteoclast-mediated bone resorption but do not directly impact tumor progression within the bone. This review focuses on examining the growing potential of immunotherapy in targeting the unique challenges posed by bone metastases.
View Article and Find Full Text PDFRadiol Case Rep
March 2025
Unit of Neurosurgery, Sant'Elia Hospital, via Luigi Russo n° 6, Caltanissetta, Italy.
J Am Chem Soc
January 2025
School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
Hexagonal diamond (HD) was reported 60 years ago and has attracted extensive attention owing to its ultrahigh theoretical hardness, 58% superior to its cubic counterpart. However, to date, synthesizing pure HD under high-pressure and high-temperature (HPHT) remains unsuccessful due to the limitations of understanding the formation mechanism. In this work, employing a systematic molecular dynamics simulation, we directly observe the graphite-to-HD transition in a nucleation-growth mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!