Injury to dopaminergic neurons development via the Lmx1a/Wnt1 autoregulatory loop induced by simazine.

Toxicol Lett

Department of Toxicology, College of Public Health, Harbin Medical University, 157 Baojian Street, Harbin, Heilongjiang Province, 150081, PR China. Electronic address:

Published: October 2020

Simazine is a kind of persistent organic pollutant that is detected in both ground and water and has several routes of exposure. Here, we explored the mechanisms underlying simazine-related effects on dopaminergic neurons via development-related factors using mouse embryos and embryonic mesencephalic hybrid cell line (MN9D cells). We treated pregnant mice with 50 μg/kg bw, 200 μg/kg bw simazine from the 0.5 day to the 10.5 day of embryonic phase and MN9D cells with 600 μM simazine for 24 h to research the mechanism of dopaminergic neurons acute respond to simazine through preliminary experiments. Protein expressions of LIM homeobox transcription factor 1-alpha (Lmx1a) and LIM homeobox transcription factor 1-beta (Lmx1b) displayed a dose- and time-dependent increase after the exposure to simazine. In the 200 μg/kg bw of embryos and the 24h-600 μM of MN9D cells, protein levels of dopaminergic developmental factors were significantly upregulated, and dopaminergic function was significantly damaged for the abnormal expression of Dyt5b. We demonstrated simazine induced the injury to dopaminergic neurons via the Lmx1a/wingless-related integration site 1 (Wnt1) and Lmx1b pathways. In the transfection experiments, we knocked down Lmx1a and Lmx1b of cells to verify the potential target of simazine-induced injury to dopaminergic neurons, respectively. We detected the protein and mRNA levels of development-related genes of dopaminergic neurons and intracellular dopamine levels in different treatment groups. Based on our experiments' results, we demonstrated an acute response to 24 h-600 μM simazine treatment, the simazine-induced injury to dopaminergic neuronal which leads to abnormal dopamine levels and dopaminergic impairment is via the activation of the Lmx1a/Wnt1 autoregulatory loop. Lmx1a is a promising target in the search for the mechanisms underlying simazine-induced dopaminergic injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxlet.2020.07.026DOI Listing

Publication Analysis

Top Keywords

dopaminergic neurons
24
injury dopaminergic
16
mn9d cells
12
dopaminergic
10
lmx1a/wnt1 autoregulatory
8
autoregulatory loop
8
simazine
8
mechanisms underlying
8
lim homeobox
8
homeobox transcription
8

Similar Publications

Lymphocyte activation gene 3 (LAG3) is a key receptor involved in the propagation of pathological proteins in Parkinson's disease (PD). This study investigates the role of neuronal LAG3 in mediating the binding, uptake, and propagation of α-synuclein (αSyn) preformed fibrils (PFFs). Using neuronal LAG3 conditional knockout mice and human induced pluripotent stem cells-derived dopaminergic (DA) neurons, we demonstrate that LAG3 expression is critical for pathogenic αSyn propagation.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms, primarily due to the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Factors contributing to this neuronal degeneration include mitochondrial dysfunction, oxidative stress, and neuronal excitotoxicity. Despite extensive research, the exact etiology of PD remains unclear, with both genetic and environmental factors playing significant roles.

View Article and Find Full Text PDF

At cellular and circuit levels, drug addiction is considered a dysregulation of synaptic plasticity. In addition, dysfunction of the glutamate transporter 1 (GLT-1) in the nucleus accumbens (NAc) has also been proposed as a mechanism underlying drug addiction. However, the cellular and synaptic impact of GLT-1 alterations in the NAc remain unclear.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a complex developmental disorder characterized by several behavioral impairments, especially in socialization, communication, and the occurrence of stereotyped behaviors. In rats, prenatal exposure to valproic acid (VPA) induces autistic-like behaviors. Previous studies by our group have suggested that the autistic-like phenotype is possibly related to dopaminergic system modulation because tyrosine hydroxylase (TH) expression was affected.

View Article and Find Full Text PDF

Peripherally administered TNF inhibitor is not protective against α-synuclein-induced dopaminergic neuronal death in rats.

Neurobiol Dis

January 2025

Department of Biomedicine & Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, 8000 Aarhus, Denmark. Electronic address:

The underlying cause of neuronal loss in Parkinson's disease (PD) remains unknown, but evidence implicates neuroinflammation in PD pathobiology. The pro-inflammatory cytokine soluble tumor necrosis factor (TNF) seems to play an important role and thus has been proposed as a therapeutic target for modulation of the neuroinflammatory processes in PD. In this regard, dominant-negative TNF (DN-TNF) agents are promising antagonists that selectively inhibit soluble TNF signaling, while preserving the beneficial effects of transmembrane TNF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!