Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The dietary intake of elaidate (elaidic acid), a trans-fatty acid, is associated with the development of various diseases. Since elaidate is a C18 unsaturated fatty acid with a steric structure similar to that of a C18 saturated fatty acid (stearate), we previously revealed that insulin-dependent glucose uptake was impaired in adipocytes exposed to elaidate prior to and during differentiation similar to stearate. However, it is still unknown whether the mechanism of impairment of insulin-dependent glucose uptake due to elaidate is similar to that of stearate. Here, we indicate that persistent exposure to elaidate has particular effects on insulin signaling and GLUT4 dynamics. Insulin-induced accumulation of Akt at the plasma membrane (PM) and elevations of phosphorylated Akt and AS160 levels in whole cells were suppressed in adipocytes persistently exposed to 50 μM elaidate. Interestingly, persistent exposure to the same concentration of stearate has no effect on the phosphorylated Akt and AS160 levels. When cells were exposed to these fatty acids, elaidate suppressed insulin-induced fusion, but not translocation, of GLUT4 storage vesicles in the PM, whereas stearate did not suppress the fusion and translocation of GLUT4 storage, indicating that elaidate has suppressive effects on the accumulation of Akt and fusion of GLUT4 storage vesicles and that both elaidate and stearate vary in the mechanisms by which they impair insulin-dependent glucose uptake.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biochi.2020.07.021 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!