A surface metric and software toolbox for EEG electrode grids in the macaque.

J Neurosci Methods

Department of Bioengineering, University of Pittsburgh, PA. Electronic address:

Published: December 2020

Background: The past years have seen increased appreciation of electroencephalographic (EEG) recordings in non-human primates (NHP) as a tool for translational research. In humans, even large EEG electrode grids can easily and quickly be placed on standardized positions using commercially available EEG caps. In the NHP, the identification of standardized EEG electrode positions is more complicated and time-consuming.

New Method: Here we introduce a surface metric and software package (NHP1020) that automates the planning of large, approximately evenly spaced electrode grids for EEG recordings in the NHP.

Results: Based on one CT and one MRI image as well as two intracranial markers, the NHP1020 software defines electrode positions on the brain surface using a surface-based spherical metric similar to the one used by the international 10-20 system. Standardized electrode grids can be shared, imported or defined with few high-level commands.

Existing Methods: NHP EEG electrodes can be placed relative to extracranial markers and measurements or relative to underlying neural structures of interest. Both approaches are time-consuming and require manual intervention. Furthermore, the use of extracranial markers in this species may be more problematic than in humans, because cranial muscles and ridges are larger and keep maturing long into adulthood.

Conclusion: The presented surface metric and the NHP1020 toolbox provide fast and automated identification of entire electrode grids in the non-human primate based on a two-dimensional metric on the brain surface.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7606710PMC
http://dx.doi.org/10.1016/j.jneumeth.2020.108906DOI Listing

Publication Analysis

Top Keywords

electrode grids
20
surface metric
12
eeg electrode
12
metric software
8
eeg recordings
8
electrode positions
8
brain surface
8
extracranial markers
8
eeg
7
electrode
7

Similar Publications

The conductivity of AgNWs electrodes can be enhanced by incorporating Ag grids, thereby facilitating the development of large-area flexible organic solar cells (FOSCs). Ag grids from vacuum evaporation offer the advantages of simple film formation, adjustable thickness, and unique structure. However, the complex 3D multi-component structure of AgNWs electrodes will exacerbate the aggregation of large Ag particles, causing the device short circuits.

View Article and Find Full Text PDF

Muscle activity mapping by single peak localization from HDsEMG.

J Electromyogr Kinesiol

January 2025

Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden.

Human-machine interfaces using electromyography (EMG) offer promising applications in control of prosthetic limbs, rehabilitation assessment, and assistive technologies. These applications rely on advanced algorithms that decode the activation patterns of muscles contractions. This paper presents a new approach to assess and decode muscle activity by localizing the origin of individual temporal peaks in high-density surface EMG recordings from the dorsal forearm during low force finger extensions.

View Article and Find Full Text PDF

Direct synthesis of multilayer graphene on a microscale ridge-patterned copper substrate.

Micron

December 2024

School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea; Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul National University, Seoul 08826, Republic of Korea; Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea; Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Graphene's exceptional physical properties, such as high thermal conductivity and mechanical strength, have attracted significant interest for its integration in transistors and thermal interface materials. While achieving various conformations of graphene is desirable for such applications, synthesizing graphene with target conformations remains a challenge. In this work, we present a method for synthesizing multilayer graphene with ridged conformations, using a microscale ridge-patterned copper (Cu) layer that was epitaxially deposited on a sapphire substrate.

View Article and Find Full Text PDF

Surface electromyography (sEMG) is useful for studying muscle function and controlling prosthetics, but cross talk from nearby muscles often limits its effectiveness. High-density surface EMG (HD-sEMG) improves spatial resolution, allowing for the isolation of M-waves in the densely packed forearm muscles. This study assessed HD-sEMG for localizing M-waves and evaluated the impact of spatial filters on cross talk reduction.

View Article and Find Full Text PDF

Brain-computer interfaces (BCIs) are evolving toward higher electrode count and fully implantable solutions, which require extremely low power densities (<15mW cm). To achieve this target, and allow for a large and scalable number of channels, flexible electronics can be used as a multiplexing interface. This work introduces an active analog front-end fabricated with amorphous Indium-Gallium-Zinx-Oxide (a-IGZO) Thin-Film Transistors (TFTs) on foil capable of active matrix multiplexing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!