Estrogen Receptor β Controls Muscle Growth and Regeneration in Young Female Mice.

Stem Cell Reports

Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan; Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Center for Metabolic Regulation of Healthy Aging, Kumamoto University Faculty of Life Sciences, Nagasaki, Japan. Electronic address:

Published: September 2020

Estrogens are female sex hormones that are important for comprehensively maintaining muscle function, and an insufficiency affects muscle strength and regeneration in females. However, it is still unclear whether estrogen signaling is mediated through receptors. To investigate the specific role of estrogen receptor β (ERβ) in skeletal muscle and satellite cells (muscle stem cells), we generated muscle-specific ERβ-knockout (mKO) and satellite cell-specific ERβ-knockout (scKO) mice, respectively. Young female mKO mice displayed a decrease in fast-type dominant muscle mass. Female, but not male, scKO mice exhibited impaired muscle regeneration following acute muscle injury, probably due to reduced proliferation and increased apoptosis of satellite cells. RNA-sequencing analysis revealed that loss of ERβ in satellite cells altered gene expression of extracellular matrix components, including laminin and collagen. The results indicate that the estrogen-ERβ pathway is a sex-specific regulatory mechanism that controls muscle growth and regeneration in female mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486216PMC
http://dx.doi.org/10.1016/j.stemcr.2020.07.017DOI Listing

Publication Analysis

Top Keywords

satellite cells
12
muscle
9
estrogen receptor
8
controls muscle
8
muscle growth
8
growth regeneration
8
young female
8
female mice
8
scko mice
8
female
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!