A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automatic Detection of QRS Complexes Using Dual Channels Based on U-Net and Bidirectional Long Short-Term Memory. | LitMetric

Objective: Detecting changes in the QRS complexes in ECG signals is regarded as a straightforward, noninvasive, inexpensive, and preliminary diagnosis approach for evaluating the cardiac health of patients. Therefore, detecting QRS complexes in ECG signals must be accurate over short times. However, the reliability of automatic QRS detection is restricted by all kinds of noise and complex signal morphologies. The objective of this paper is to address automatic detection of QRS complexes.

Methods: In this paper, we proposed a new algorithm for automatic detection of QRS complexes using dual channels based on U-Net and bidirectional long short-term memory. First, a proposed preprocessor with mean filtering and discrete wavelet transform was initially applied to remove different types of noise. Next the signal was transformed and annotations were relabeled. Finally, a method combining U-Net and bidirectional long short-term memory with dual channels was used for the automatic detection of QRS complexes.

Results: The proposed algorithm was trained and tested using 44 ECG records from the MIT-BIH arrhythmia database and CPSC2019 dataset, which achieved 99.06% and 95.13% for sensitivity, 99.22% and 82.03% for positive predictivity, and 98.29% and 78.73% accuracy on the two datasets respectively.

Conclusion: Experimental results prove that the proposed method may be useful for automatic detection of QRS complex task.

Significance: The proposed method not only has application potential for QRS complex detecting for large ECG data, but also can be extended to other medical signal research fields.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2020.3018563DOI Listing

Publication Analysis

Top Keywords

automatic detection
20
detection qrs
20
qrs complexes
16
dual channels
12
u-net bidirectional
12
bidirectional long
12
long short-term
12
short-term memory
12
qrs
9
complexes dual
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!