A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep Learning for LiDAR Point Clouds in Autonomous Driving: A Review. | LitMetric

Recently, the advancement of deep learning (DL) in discriminative feature learning from 3-D LiDAR data has led to rapid development in the field of autonomous driving. However, automated processing uneven, unstructured, noisy, and massive 3-D point clouds are a challenging and tedious task. In this article, we provide a systematic review of existing compelling DL architectures applied in LiDAR point clouds, detailing for specific tasks in autonomous driving, such as segmentation, detection, and classification. Although several published research articles focus on specific topics in computer vision for autonomous vehicles, to date, no general survey on DL applied in LiDAR point clouds for autonomous vehicles exists. Thus, the goal of this article is to narrow the gap in this topic. More than 140 key contributions in the recent five years are summarized in this survey, including the milestone 3-D deep architectures, the remarkable DL applications in 3-D semantic segmentation, object detection, and classification; specific data sets, evaluation metrics, and the state-of-the-art performance. Finally, we conclude the remaining challenges and future researches.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2020.3015992DOI Listing

Publication Analysis

Top Keywords

point clouds
16
lidar point
12
autonomous driving
12
deep learning
8
clouds autonomous
8
applied lidar
8
detection classification
8
autonomous vehicles
8
autonomous
5
lidar
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!