Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pressurization of gas within embedded channels and cavities is a popular method for actuating soft robots. Various previous works examined the effects of internal fluid mechanics on this actuation approach, as well as on leveraging viscous effects to extend the capabilities of soft robots. However, no existing works studied the combined effects of fluid viscosity and compressibility, relevant to miniaturized configurations, which is the aim of the current work. We derive a general model for compressible viscous flow in an elastic media representing a simplified miniaturized soft robot. We illustrate applying this model to periodic configurations, simplifying it via a long-wave approximation. Steady, and time-dependent solutions are obtained, allowing to model the flow and to provide insight into the actuation dynamics of miniaturized pneumatic soft robots.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/soro.2020.0037 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!