AI Article Synopsis

  • Expanded polytetrafluoroethylene (ePTFE) is commonly used in biomedical applications but faces issues with adverse reactions like thrombosis when exposed to blood, limiting its use.
  • Researchers are exploring a simple immersion coating method to modify ePTFE to make it biologically inert without needing high-energy pretreatments.
  • The study demonstrates that coated ePTFE membranes significantly reduce blood cell and bacterial attachment, showing a 90% reduction in bacteria attachment and improvements in biocompatibility, indicating potential for safer use in medical devices.

Article Abstract

Expanded polytetrafluoroethylene (ePTFE) is one of the materials widely used in the biomedical field, yet its application is being limited by adverse reactions such as thrombosis when it comes in contact with blood. Thus, a simple and robust way to modify ePTFE to be biologically inert is sought after. Modification of ePTFE without high-energy pretreatment, such as immersion coating, has been of interest to researchers for its straightforward process and ease in scaling up. In this study, we utilized a two-step immersion coating to zwitterionize ePTFE membranes. The first coating consists of the co-deposition of polyethylenimine (PEI) and polydopamine (PDA) to produce amine groups in the surface of the ePTFE for further functionalization. These amine groups from PEI will be coupled with the epoxide group of the zwitterionic copolymer, poly(GMA--SBMA) (PGS), via a ring-opening reaction in the second coating. The coated ePTFE membranes were physically and chemically characterized to ensure that each step of the coating is successful. The membranes were also tested for their thrombogenicity via quantification of the blood cells attached to it during contact with biological solutions. The coated membranes exhibited around 90% reduction in attachment with respect to the uncoated ePTFE for both Gram-positive and Gram-negative strains of bacteria ( and ). The coating was also able to resist blood cell attachment from human whole blood by 81.57% and resist red blood cell attachment from red blood cell concentrate by 93.4%. These ePTFE membranes, which are coated by a simple immersion coating, show significant enhancement of the biocompatibility of the membranes, which shows promise for future use in biological devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c09073DOI Listing

Publication Analysis

Top Keywords

immersion coating
16
eptfe membranes
12
blood cell
12
expanded polytetrafluoroethylene
8
coating
8
eptfe
8
amine groups
8
cell attachment
8
red blood
8
blood
6

Similar Publications

The adoption of carbon capture, utilization, and storage (CCUS) technology is increasingly prevalent, driven by the global initiative to conserve energy and reduce emissions. Nevertheless, CCUS has the potential to induce corrosion in equipment, particularly in high-pressure environments containing carbon dioxide (CO). Therefore, anti-corrosion protection is necessary for the metal utilized for CO production and storage equipment.

View Article and Find Full Text PDF

Introduction: Chronic inflammation leading to implant failure present major challenges in orthopedics, dentistry, and reconstructive surgery. Titanium alloys, while widely used, often provoke inflammatory complications. Zinc-doped calcium phosphate (CaP) coatings offer potential to enhance implant integration by improving corrosion resistance, bioactivity, and immunocompatibility.

View Article and Find Full Text PDF

Utilizing aerosol jet printing (AJP), this study achieves a breakthrough in fabricating luminescent fibers with superior optical performance and flexibility. The YO:Eu coated high silica glass fibers demonstrate luminous efficiency twice that of traditional methods, retaining 80% after 250 bending cycles and 90% after sweat immersion. This AJP technique not only elevates the potential of smart fabrics but also represents a significant innovation in lighting technology, providing new ideas for advanced functional fiber fabrication.

View Article and Find Full Text PDF

Background: Normothermic ex situ heart perfusion (ESHP) has emerged as a valid modality for advanced cardiac allograft preservation and conditioning prior to transplantation though myocardial function declines gradually during ESHP thus limiting its potential for expanding the donor pool. Recently, the utilization of dialysis has been shown to preserve myocardial and coronary vasomotor function. Herein, we sought to determine the changes in myocardial metabolism that could support this improvement.

View Article and Find Full Text PDF

Enhanced mechanical properties and in vitro bioactivity of silicon nitride ceramics with SiO, YO, and AlO as sintering aids.

J Mech Behav Biomed Mater

January 2025

School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China. Electronic address:

Silicon nitride (Si₃N₄) ceramics exhibit excellent mechanical properties and biocompatibility, making them highly suitable for biomedical applications, particularly in implants. In this study, the mechanical properties and bioactivity of Si₃N₄ ceramics with varying amounts of Y₂O₃-Al₂O₃-SiO₂ sintering aids were investigated. Increasing the sintering additive content from 4 wt% to 8 wt% substantially improved the bulk density of the ceramics, leading to notable enhancements in mechanical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!