Nonadiabatic exciton-phonon coupling in Raman spectroscopy of layered materials.

Sci Adv

Department of Physics and Materials Science, University of Luxembourg, 1511 Luxembourg, Luxembourg.

Published: August 2020

We present an ab initio computational approach for the calculation of resonant Raman intensities, including both excitonic and nonadiabatic effects. Our diagrammatic approach, which we apply to two prototype, semiconducting layered materials, allows a detailed analysis of the impact of phonon-mediated exciton-exciton scattering on the intensities. In the case of bulk hexagonal boron nitride, this scattering leads to strong quantum interference between different excitonic resonances, strongly redistributing oscillator strength with respect to optical absorption spectra. In the case of MoS, we observe that quantum interference effects are suppressed by the spin-orbit splitting of the excitons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7413722PMC
http://dx.doi.org/10.1126/sciadv.abb5915DOI Listing

Publication Analysis

Top Keywords

layered materials
8
quantum interference
8
nonadiabatic exciton-phonon
4
exciton-phonon coupling
4
coupling raman
4
raman spectroscopy
4
spectroscopy layered
4
materials initio
4
initio computational
4
computational approach
4

Similar Publications

Research on flexible strain sensors has grown rapidly and is widely applied in the fields of soft robotics, body motion detection, wearable sensors, health monitoring, and sports. In this study, MXene was successfully synthesized in powder form and combined with multi-walled carbon nanotube (MWCNT) to develop MWCNT@MXene conductive network-based flexible strain sensors with silicone rubber (SR) substrate. Combining MWCNTs with MXene as a conductive material has been shown to significantly improve the sensor performance, due to MXene's high conductivity properties that strengthen the MWCNT conductive pathway, increase sensitivity, and improve sensor stability.

View Article and Find Full Text PDF

Room temperature ferroelectricity in monolayer graphene sandwiched between hexagonal boron nitride.

Nat Commun

January 2025

Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, China.

The ferroelectricity in stacked van der Waals multilayers through interlayer sliding holds great promise for ultrathin high-density memory devices, yet mostly subject to weak polarization and cryogenic operating condition. Here, we demonstrate robust room-temperature ferroelectricity in monolayer graphene sandwiched between hexagonal boron nitride layers with a rhombohedral-like stacking (i.e.

View Article and Find Full Text PDF

The construction of thin film heterostructures has been a widely successful archetype for fabricating materials with emergent physical properties. This strategy is of particular importance for the design of multilayer magnetic architectures in which direct interfacial spin-spin interactions between magnetic phases in dissimilar layers lead to emergent and controllable magnetic behavior. However, crystallographic incommensurability and atomic-scale interfacial disorder can severely limit the types of materials amenable to this strategy, as well as the performance of these systems.

View Article and Find Full Text PDF

Dielectric polymer capacitors suffer from low discharged energy density and efficiency due to their low breakdown strength, small dielectric constant and large electric hysteresis. Herein, a synergistic enhancement strategy is proposed to significantly increase both breakdown strength and dielectric constant while suppressing hysteresis, through introducing 2-dimensional bismuth layer-structured NaBiTiO micro-sheets and designing a unique bilayer structure. Excitingly, an ultra-high discharged energy density of 25.

View Article and Find Full Text PDF

A cost-effective strategy is reported utilizing ionic liquid (IL), 1-hexyl-3-methylimidazolium bisulfate ([HMIM] HSO), to delaminate TiC MXene, thereby enhancing its efficiency in electrocatalyzing tryptophan (Trp) oxidation. The positively charged IL effectively intercalates within the negatively charged MXene layers, fostering structural stability through π-π stacking and electrostatic interactions. Consequently, the resulting IL-TiC composite not only maintained the inherent electronic conductivity of TiC but also significantly augmented its electrocatalytic prowess.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!