Structure of the sodium-dependent phosphate transporter reveals insights into human solute carrier SLC20.

Sci Adv

Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan (R.O.C.).

Published: August 2020

Inorganic phosphate (P) is a fundamental and essential element for nucleotide biosynthesis, energy supply, and cellular signaling in living organisms. Human phosphate transporter (PiT) dysfunction causes numerous diseases, but the molecular mechanism underlying transporters remains elusive. We report the structure of the sodium-dependent phosphate transporter from (PiT) in complex with sodium and phosphate (PiT-Na/Pi) at 2.3-angstrom resolution. We reveal that one phosphate and two sodium ions (Pi-2Na) are located at the core of PiT and that the third sodium ion (Na) is located near the inner membrane boundary. We propose an elevator-like mechanism for sodium and phosphate transport by PiT, with the PiT-Na/Pi complex adopting an inward occluded conformation. We found that disease-related PiT variants carry mutations in the corresponding sodium- and phosphate-binding residues identified in PiT. Our three-dimensional structure of PiT provides a framework for understanding PiT dysfunction and for future structure-based drug design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7413737PMC
http://dx.doi.org/10.1126/sciadv.abb4024DOI Listing

Publication Analysis

Top Keywords

phosphate transporter
12
structure sodium-dependent
8
sodium-dependent phosphate
8
pit
8
transporter pit
8
pit dysfunction
8
sodium phosphate
8
phosphate
7
transporter reveals
4
reveals insights
4

Similar Publications

D-ribose-5-phosphate inactivates YAP and functions as a metabolic checkpoint.

J Hematol Oncol

January 2025

Department of Radiation Oncology, Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.

Background: Targeting glucose uptake by glucose transporter (GLUT) inhibitors is a therapeutic opportunity, but efforts on GLUT inhibitors have not been successful in the clinic and the underlying mechanism remains unclear. We aim to identify the key metabolic changes responsible for cancer cell survival from glucose limitation and elucidate its mechanism.

Methods: The level of phosphorylated YAP was analyzed with Western blotting and Phos-tag immunoblotting.

View Article and Find Full Text PDF

Dual-template epitope imprinted nanoparticles for anti-glycolytic tumor-targeted treatment.

J Colloid Interface Sci

December 2024

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China; National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. Electronic address:

Glycolysis provides tumors with abundant nutrients through glucose (Glu) metabolism. As a therapeutic target, precise targeting and effective inhibition of the glycolysis process remains a major challenge in anti-metabolic therapy. In this study, a novel dual-template molecularly imprinted polymer (D-MIP), capable of specifically recognizing glucose transporter member 1 (GLUT1) and hexokinase-2 (HK2) was prepared for anti-glycolytic tumor therapy.

View Article and Find Full Text PDF

Phenotypic variability in phosphate transport disorders highlights need for individualized treatment strategies.

Kidney Int

January 2025

Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA. Electronic address:

Pathogenic variants in the SLC34A1 and SLC34A3 genes, encoding sodium-phosphate cotransporters 2a (NPT2a) and 2c (NPT2c), are linked to rare phosphate-wasting disorders. In this issue, Brunkhorst et al. explore the clinical presentations, biochemical profiles, and treatment outcomes associated with these genetic variants in 113 individuals.

View Article and Find Full Text PDF

To improve the selenium (Se) uptake in grapes, the effects of arbuscular mycorrhizal fungi (AMF) on the Se accumulation in grapevines were studied under a soil Se concentration of 5 mg/kg, and the transcriptome and metabolome sequencing were used to elucidate the regulatory mechanism of AMF on Se accumulation. AMF initially decreased the biomass of grapevines, but later increased the biomass. Moreover, AMF enhanced the activities of Se metabolism enzymes (adenosine triphosphate sulfurylase, adenosine 5'-phosphosulfate reductase, serine acetyltransferase, and cysteine methyltransferase) and the Se concentration in grapevines.

View Article and Find Full Text PDF

Transcription factor CaPHR3 enhances phosphate starvation tolerance by up-regulating the expression of the CaPHT1;4 phosphate transporter gene in pepper.

Int J Biol Macromol

December 2024

Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, Dried Chili Industry Technology Research Center, Department of Biology and Food Science, Shangqiu Normal University, Shangqiu, Henan 476000, China. Electronic address:

Plants frequently encounter phosphate (Pi) starvation due to its scarce availability in soil, necessitating an adaptive phosphate starvation response (PSR). This study explores this adaptation in pepper (Capsicum annuum L.) under low-Pi stress, focusing on the PHOSPHATE STARVATION RESPONSE (PHR) gene family.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!