Endogenous Labile Iron Pool-Mediated Free Radical Generation for Cancer Chemodynamic Therapy.

J Am Chem Soc

Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States.

Published: September 2020

Current chemodynamic therapy (CDT) primarily relies on the delivery of transition metal ions with Fenton activity to trigger hydroxyl radical production from hydrogen peroxide. However, administration of an excess amount of exogenous Fenton-type heavy metals may cause potential adverse effects to human health, including acute and chronic damages. Here, we present a new CDT strategy that uses intracellular labile iron pool (LIP) as the endogenous source of Fenton-reactive metals for eliciting free radical generation, and the discovery of hydroperoxides (R'OOH) as an optimal LIP-mediated chemodynamic agent against cancer. By simulating the metabolic fates of peroxo compounds within cells, R'OOH was found to have excellent free radical-producing ability in the presence of labile iron(II) and to suffer only moderate elimination by glutathione/glutathione peroxidase, which contributes to its superior chemodynamic efficacy. The LIP-initiated nontoxic-to-toxic transition of R'OOH, together with increased LIP levels in tumor cells, enabled efficient and specific CDT of cancer. Moreover, pH/labile iron(II) cascade-responsive nanomedicines comprising encapsulated methyl linoleate hydroperoxide and LIP-increasing agent in pH-sensitive polymer particles were fabricated to realize enhanced CDT. This work not only paves the way to using endogenous Fenton-type metals for cancer therapy but also offers a paradigm for the exploration of high-performance chemodynamic agents activated by intracellular LIP.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.0c05604DOI Listing

Publication Analysis

Top Keywords

labile iron
8
free radical
8
radical generation
8
chemodynamic therapy
8
chemodynamic
5
endogenous labile
4
iron pool-mediated
4
pool-mediated free
4
cancer
4
generation cancer
4

Similar Publications

Iron homeostasis is strictly related to numerous physiological pathways including cell cycle progression and cell growth. The newest anticancer strategies focus on either depleting the cells with a suitable chelator or increasing their loading by administering iron complexes to induce ferroptosis. Iron depletion inhibits cell proliferation, while iron overload induces the damage of guanine nucleobases in G-quadruplex structures via ROS generation, leading to genome instability.

View Article and Find Full Text PDF

Targeting iron metabolism has emerged as a novel therapeutic strategy for the treatment of cancer. As such, iron chelator drugs are repurposed or specifically designed as anticancer agents. Two important chelators, deferasirox (Def) and triapine (Trp), attack the intracellular supply of iron (Fe) and inhibit Fe-dependent pathways responsible for cellular proliferation and metastasis.

View Article and Find Full Text PDF

Development of Etf-3-specific nanobodies to prevent Ehrlichia infection and LNP-mRNA delivery in cellular and murine models.

Microbiol Res

December 2024

Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, United States. Electronic address:

Ehrlichia chaffeensis is an obligatory intracellular bacterium that infects monocytes and macrophages and causes human monocytic ehrlichiosis. Ehrlichia translocated factor-3 (Etf-3) is a type IV secretion system effector that binds host-cell ferritin light chain and induces ferritinophagy, thus increasing cellular labile iron pool for Ehrlichia proliferation. To further characterize roles of Etf-3 in Ehrlichia infection, we produced immune libraries of Etf-3-specific nanobodies (Nbs).

View Article and Find Full Text PDF

Ferroptosis plays a significant role in the pathological mechanism of acute kidney injury (AKI) for many etiologies. The characteristics of ferroptosis involve many aspects, including iron metabolism, lipid metabolism, and glutathione metabolism. In terms of iron metabolism, ferroptosis involves the accumulation of labile iron; in terms of lipid metabolism, ferroptosis involves the peroxidation of lipids, especially certain phospholipids; in terms of glutathione metabolism, ferroptosis involves the reduction of reduced glutathione (GSH) levels, leading to a decrease in the activity of glutathione peroxidase 4 (GPX4).

View Article and Find Full Text PDF

Peroxynitrite (ONOO) is a highly reactive nitrogen species that can cause significant damage to proteins, lipids, and DNA. Various enzymes, including metalloenzymes, play crucial roles in reducing ONOO concentrations to protect cellular components. While the interaction of ONOO with heme proteins is well known, the reduction by Cu-containing proteins is less studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!