Liposomal fasudil as a treatment for cerebral ischemia/reperfusion (I/R) injury has been demonstrated to be effective in animal models due to the high accumulation of liposomes in damaged brain tissue. However, it is still unclear what effect drug release rate has on the treatment of I/R injury, where pathology progresses dramatically in a short time. In the present study, we assessed four formulations of liposomal fasudil. The results of an in vitro drug release assay showed that the release properties of fasudil were changed by varying the lipid composition and internal phase of the liposomes. Based on these results, differences in the transition of fasudil plasma concentration were monitored after the administration of each type of liposomal fasudil in normal rats. A pharmacokinetic study showed that higher levels of drug retention in liposomal fasudil resulted in higher fasudil plasma concentration. Finally, treatment of I/R injury model rats with liposomal fasudil revealed that a mid-level release rate of fasudil from liposomes resulted in the greatest therapeutic effect among the formulations. In conclusion, these results demonstrate that an optimized drug release rate from liposomes enhances the therapeutic effect of fasudil for the treatment of cerebral I/R injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2020.07.038 | DOI Listing |
Eur Rev Med Pharmacol Sci
July 2023
Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, KSA.
Objective: The study is intended to formulate Fasudil loaded vesicular system for application in the management of angina.
Materials And Methods: Fasudil was made into a complex with phospholipid, and other different formulations were made, including Fasudil solution, liposomal form, and Fasudil loaded into the gel. A drug characterization study was conducted and noted.
J Pharmacol Exp Ther
April 2023
Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
Existing vascular endothelial growth factor-oriented antiangiogenic approaches are known for their high potency. However, significant side effects associated with their use drive the need for novel antiangiogenic strategies. The small GTPase RhoA is an established regulator of actin cytoskeletal dynamics.
View Article and Find Full Text PDFInt J Nanomedicine
January 2022
Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
Purpose: Fasudil hydrochloride (Fas), a rho-associated protein kinase inhibitor, proved to be promising for glaucoma management owing to its IOP lowering and antioxidant effects. However, its highly hydrophilic nature limits ocular permeation and bioavailability. Hence, the study objective was the development of Fas loaded vesicular system with high entrapment efficiency formulated as a thermosensitive gel for local administration aiming to enhance ocular retention and permeation and hence therapeutic efficacy.
View Article and Find Full Text PDFYakugaku Zasshi
December 2021
Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University.
Increase in vascular permeability of the blood-brain barrier (BBB) is a distinct pathology following ischemic stroke. In previous studies, we demonstrated that liposomal drug delivery system (DDS)-based delivery of neuroprotectants is useful for treating cerebral ischemia/reperfusion injury. Additionally, our previous studies reported that combination therapy with liposomal fasudil plus tissue plasminogen activator (t-PA), a thrombolytic agent, brings about decrease in the risk of t-PA-derived cerebral hemorrhage and prolong the therapeutic time window of t-PA for treating acute ischemic stroke.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2020
Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan. Electronic address:
Liposomal fasudil as a treatment for cerebral ischemia/reperfusion (I/R) injury has been demonstrated to be effective in animal models due to the high accumulation of liposomes in damaged brain tissue. However, it is still unclear what effect drug release rate has on the treatment of I/R injury, where pathology progresses dramatically in a short time. In the present study, we assessed four formulations of liposomal fasudil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!