Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hepatitis E virus (HEV) is a non-enveloped, globular particle that is responsible for acute hepatitis. HEV is classified into the Hepeviridae family and can be divided into four species (A-D). All HEV variants that infect humans are reported to belong to species A (HEV-A), except species C (HEV-C), which was reported to infect humans in December 2018. We determined the crystal structure of the HEV-C E2s domain at 1.8 Å resolution. It contains a classical 12-stranded β-sandwich motif and forms dimers by hydrogen bonding, though the amino acid residues that form hydrogen bonds are quite different from the residues of HEV-A. The HEV-C E2s domain shares the common groove region with other structurally related viruses, and some subtle differences in this region may be related to host adoption or antibody binding. Antibody binding experiments and structural analysis revealed that HEV-C E2s is able to bind to the previously reported broad-spectrum antibody 8G12 but not bind to the antibody 8C11. Meanwhile, the structure analysis shows that HEV-C E2s does not have the key sites for binding to host cells as displayed by HEV-A (Genotype 1) E2s. These structural and biological findings present important implications for understanding the molecular mechanisms of host recognition and entry of HEV-C, as well as provide clues to the development of therapeutic antibodies and vaccines against HEV-C infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2020.07.074 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!