Aldehyde dehydrogenase 2 inhibited oxidized LDL-induced NLRP3 inflammasome priming and activation via attenuating oxidative stress.

Biochem Biophys Res Commun

Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education & Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China. Electronic address:

Published: September 2020

Oxidized low-density lipoprotein (ox-LDL)-mediated NLRP3 inflammasome activation is crucial in atherosclerosis (AS) initiation and progression. Aldehyde dehydrogenase 2 (ALDH2) has been reported to display protective effects during AS development; however, the underlying mechanisms are largely unknown. Here we investigate the role of ALDH2 in ox-LDL-induced NLRP3 inflammasome priming and activation. We treated RAW264.7 murine macrophages with ox-LDL with or without ALDH2 activator Alda-1 and measured NLRP3 inflammasome priming and activation, ALDH2 protein expression and enzyme activity, IL-1β release, and DNA damage. It was found that ox-LDL impaired ALDH2 activity and induced NLRP3 inflammasome priming and activation. Alda-1 inhibited both of the priming and activation steps of NLRP3 inflammasome as well as subsequent cell pyroptosis and attenuated ROS and 4-HNE levels in ox-LDL-treated macrophages. Taken together, ALDH2 activation inhibits priming and activation of NLRP3 inflammasome via reducing oxidative stress, which suggests that ALDH2 may be a potential target for anti-inflammatory therapies in AS treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2020.06.075DOI Listing

Publication Analysis

Top Keywords

nlrp3 inflammasome
28
priming activation
24
inflammasome priming
16
aldehyde dehydrogenase
8
activation
8
oxidative stress
8
nlrp3
7
inflammasome
7
aldh2
7
priming
6

Similar Publications

Fatty acid binding proteins (FABPs) are a class of small molecular mass intracellular lipid chaperone proteins that bind to hydrophobic ligands, such as long-chain fatty acids. FABP5 expression was significantly upregulated in the N-methyl-d-aspartic acid (NMDA) model, the microbead-induced chronic glaucoma model, and the DBA/2J mice. Previous studies have demonstrated that FABP5 can mediate mitochondrial dysfunction and oxidative stress in ischemic neurons, but the role of FABP5 in oxidative stress and cell death in retina NMDA injury models is unclear.

View Article and Find Full Text PDF

Background And Aim: Hepatic encephalopathy (HE) is a complex neurological disorder in individuals with liver diseases, necessitating effective neuroprotective interventions to alleviate its adverse outcomes. Berberine (BBR), a natural compound with well-established anti-fibrotic and neuroprotective properties, has not been extensively studied in the context of glial activation under hyperammonaemic conditions. This study evaluates the neuroprotective potential of BBR in a thioacetamide (TAA)-induced HE rat model, focusing on its effects on glial activation and NLRP3 inflammasome signalling.

View Article and Find Full Text PDF

Chronic inflammation is increasingly recognized as a critical factor in female reproductive health; influencing natural conception and the outcomes of assisted reproductive technologies such as in vitro fertilization (IVF). An essential component of innate immunity, the NLR family pyrin domain-containing 3 (NLRP3) inflammasome is one of the major mediators of inflammatory responses, and its activation is closely linked to oxidative stress. This interaction contributes to a decline in oocyte quality, reduced fertilization potential, and impaired embryo development.

View Article and Find Full Text PDF

Sandhoff disease (SD) is a progressive neurodegenerative lysosomal storage disorder characterized by GM2 ganglioside accumulation as a result of mutations in the gene, which encodes the β-subunit of the enzyme β-hexosaminidase. Lysosomal storage of GM2 triggers inflammation in the CNS and periphery. The NLRP3 inflammasome is an important coordinator of pro-inflammatory responses, and we have investigated its regulation in murine SD.

View Article and Find Full Text PDF

Harnessing the Power of Machine Learning Guided Discovery of NLRP3 Inhibitors Towards the Effective Treatment of Rheumatoid Arthritis.

Cells

December 2024

Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea.

The NLRP3 inflammasome, plays a critical role in the pathogenesis of rheumatoid arthritis (RA) by activating inflammatory cytokines such as IL1β and IL18. Targeting NLRP3 has emerged as a promising therapeutic strategy for RA. In this study, a multidisciplinary approach combining machine learning, quantitative structure-activity relationship (QSAR) modeling, structure-activity landscape index (SALI), docking, molecular dynamics (MD), and molecular mechanics Poisson-Boltzmann surface area MM/PBSA assays was employed to identify novel NLRP3 inhibitors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!