AI Article Synopsis

  • MicroRNAs (miRNAs) are small noncoding RNAs that regulate over 60% of coding genes and their abnormal expression is linked to diseases like cancer.
  • Research on the ribonuclease enzyme Drosha, crucial for miRNA production, revealed two new isoforms through PacBio sequencing: AS27a, a truncated unstable protein, and AS32a, a full-length Drosha variant with a 14-amino acid insertion.
  • Neither AS27a nor AS32a can restore miRNA expression in Drosha knockout cells, but AS32a is more prominent in breast cancer tumors compared to normal tissues, indicating a potential role in cancer progression.

Article Abstract

MicroRNAs (miRNAs) are a class of small noncoding RNAs about 22-nucleotide (nt) in length that collectively regulate more than 60% of coding genes. Aberrant miRNA expression is associated with numerous diseases, including cancer. miRNA biogenesis is licenced by the ribonuclease (RNase) III enzyme Drosha, the regulation of which is critical in determining miRNA levels. We and others have previously revealed that alternative splicing regulates the subcellular localization of Drosha. To further investigate the alternative splicing landscape of Drosha transcripts, we performed PacBio sequencing in different human cell lines. We identified two novel isoforms resulting from partial intron-retention in the region encoding the Drosha catalytic domain. One isoform (AS27a) generates a truncated protein that is unstable in cells. The other (AS32a) produces a full-length Drosha with a 14 amino acid insertion in the RIIID domain. By taking advantage of Drosha knockout cells in combination with a previously established reporter assay, we demonstrated that Drosha-AS32a lacks cleavage activity. Furthermore, neither Drosha-27a nor Drosha-32a were able to rescue miRNA expression in the Drosha knockout cells. Interestingly, both isoforms were abundantly detected in a wide range of cancer cell lines (up to 15% of all Drosha isoforms). Analysis of the RNA-seq data from over 1000 breast cancer patient samples revealed that the AS32a is relatively more abundant in tumours than in normal tissue, suggesting that AS32a may play a role in cancer development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7567492PMC
http://dx.doi.org/10.1080/15476286.2020.1813439DOI Listing

Publication Analysis

Top Keywords

drosha
9
drosha isoforms
8
mirna expression
8
alternative splicing
8
cell lines
8
drosha knockout
8
knockout cells
8
mirna
5
cancer
5
novel abundant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!