Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Although it is understood that equine endocrinopathic laminitis can be triggered by high concentrations of insulin, it is unclear whether this represents a direct action on lamellar tissue via insulin receptors (InsR), an interaction with IGF-1 receptors (IGF-1R), or some other, indirect action. This uncertainty is because of the reported scarcity of InsR in lamellar tissue and the low affinity of insulin for equine IGF-1R. In the present study, the effects of insulin and IGF-1 (as a positive control) were examined using lamellar explants isolated from the hooves of healthy horses and incubated in cell culture medium for between 2 min and 48 h. In this system, a low physiological concentration of IGF-1 (10 nM; 1.31 ng/mL) caused a marked increase in the appearance of phosphorylated IGF-1R after 5 min (P < 0.05), and this effect was blocked by a human anti-IGF-1R monoclonal antibody (mAb). However, a high concentration of insulin (10 nM; 1,430 μIU/mL) appeared to cause dephosphorylation of the IGF-1R after 5 min (P < 0.01), 15 min, and 30 min (P < 0.001). Using H-thymidine as a marker, it was also demonstrated that insulin and IGF-1-stimulated cell proliferation in lamellar explants over the same concentration range as each other (1-100 nM), implying that each peptide acts via its own receptor (P < 0.001). Conversely, the effect of both peptides could be blocked using a selective anti-IGF-1R mAb (P < 0.001), implying that insulin acts via IGF1-R (either directly or indirectly). Notwithstanding this conundrum, the results demonstrate that insulin acts directly on lamellar tissue and suggest that a therapeutic anti-IGF-1R mAb could be useful in treating or preventing endocrinopathic laminitis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.domaniend.2020.106530 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!