The microcapsule containing phase change materials(microPCMs) with high efficiency of photothermal conversion was prepared by in-situ polymerization via ultrasonic dispersion which used capric acid(CA) as core material and nano silicon carbide(nano-SiC) modified melamine-urea-formaldehyde(MUF) resin as wall material. The nano-SiC has good cross-linking with MUF shell. When the nano-SiC was added in microPCMs, it behaves superior thermal conductivity and thermal storage properties. When the content of nano-SiC arrives 6 wt%, the performance of the microPCMs whose encapsulation efficiency is 65.7% is the best, and thermal conductivity increase by 59.2%. Due to the proper amount of nano-SiC added into the MUF shell, it can effectively fill the tiny holes on the MUF shell. Therefore, the microPCMs with appropriate nano-SiC have better leakage prevention. It is worth noting that MicroPCMs-6% and MicroPCMs-8% show excellent photothermal conversion property, and the photothermal conversion rate is 74.4% and 71.1% respectively in the photothermal conversion experiment. Because nano-SiC can effectively capture and absorb photons under light irradiation and convert light into heat through internal molecular vibration, the microPCMs with appropriate nano-SiC behaves well in photothermal conversion. In other words, microPCMs have potential in solar energy utilization and thermal energy storage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2020.08.014DOI Listing

Publication Analysis

Top Keywords

photothermal conversion
24
muf shell
12
phase change
8
thermal conductivity
8
micropcms appropriate
8
appropriate nano-sic
8
nano-sic
7
photothermal
6
conversion
6
micropcms
5

Similar Publications

Interfacial solar-driven evaporation (ISDE) is a promising method for addressing the global freshwater shortage. However, it remains challenging to develop an ISDE system that combines high evaporation rates, low cost, ease of processing, and self-floatability. In this study, we present a flexible, porous sponge photothermal material based on three-dimensional thermoplastic expanded microspheres (TEMs).

View Article and Find Full Text PDF

Foam materials hold great promise in construction and packaging applications. However, the non-biodegradability and poor thermal stability of petroleum-based foams present serious environmental and safety concerns. It is crucial to develop sustainable, eco-friendly foam fabrication methods that balance environmental responsibility with high performance.

View Article and Find Full Text PDF

Molecular Engineering of a SICTERS Small Molecule with Superior Raman Imaging and Photothermal Performance.

J Am Chem Soc

March 2025

Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.

Raman-based theranostics has demonstrated great potential for sensitive real-time imaging and treatment. However, these advanced materials, primarily depending on the SERS technique, encounter clinical concerns regarding substrate biosafety. Herein, we molecularly engineered a substrate-free SICTERS small molecule, namely BTT-TPA (bis-thienyl-substituted benzotriazole selenadiazole derivative structures), possessing both ultrasensitive Raman signals and excellent photothermal effects based on self-stacking.

View Article and Find Full Text PDF

Electricity-Efficient On-Demand Photothermal Activation for Tunable Thermochromic Windows.

Nano Lett

March 2025

National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.

Thermochromic (TC) windows with passively controlled sunlight regulation have demonstrated significant building energy conservations. Realizing the active control of the TC window can expand its popularity while remaining an intractable challenge. Herein, a low-power-dissipative strategy that endows TC windows with an actively tunable transmittance is presented through the electro-induced tunable photothermal conversions (ETPCs).

View Article and Find Full Text PDF

The formation of ice due to global climate change poses challenges across multiple industries. Traditional anti-icing technologies often suffer from low efficiency, high energy consumption, and environmental pollution. Photothermal and hydrophobic surfaces with nano-micro structures (PHS-NMSs) offer innovative solutions to these challenges due to their exceptional optical absorption, heat conversion capabilities, and unique surface water hydrophobic characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!