We evaluated the performance of X-bar chart, exponentially weighted moving average, and C3 cumulative sums aberration detection algorithms for acute diarrheal disease syndromic surveillance at naval sites in Peru during 2007-2011. The 3 algorithms' detection sensitivity was 100%, specificity was 97%-99%, and positive predictive value was 27%-46%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7454051PMC
http://dx.doi.org/10.3201/eid2609.191315DOI Listing

Publication Analysis

Top Keywords

detection algorithms
8
syndromic surveillance
8
assessing outbreak
4
outbreak detection
4
algorithms electronic
4
electronic syndromic
4
surveillance system
4
system resource-limited
4
resource-limited setting
4
setting evaluated
4

Similar Publications

The explosion of Internet-of-Thing enables several interconnected devices but also gives rise chance for unauthorized parties to compromise sensitive information through wireless communication systems. Covert communication therefore has emerged as a potential candidate for ensuring data privacy in conjunction with physical layer transmission to render two lines of defense. In this paper, we aim to enhance the individual transmission of nearby users in non-orthogonal multiple access (NOMA) systems under scenarios of an eavesdropper who monitors covert transmission before decoding covert information.

View Article and Find Full Text PDF

The approaches used to determine the medicinal properties of the plants are often destructive, labor-intensive, time-consuming, and expensive, making it impossible to analyze their quality analysis online. Performance of hyperspectral imaging (HSI) integrated with intelligent techniques to overcome these problems was investigated in this research. For this purpose, three classification methods-support vector machine, random forest (RF), and extreme gradient boosting-were studied for the classification of plants in three classes of medicinal, edible, and ornamental for the organs of leaf, stem, flower, and root.

View Article and Find Full Text PDF

Background: Effective pain recognition and treatment in perioperative environments reduce length of stay and decrease risk of delirium and chronic pain. We sought to develop and validate preliminary computer vision-based approaches for nociception detection in hospitalized patients.

Methods: Prospective observational cohort study using red-green-blue camera detection of perioperative patients.

View Article and Find Full Text PDF

In response to the problem of noise interference in the knock detection signal received by the pickup in the ceramic sheet knock non-destructive testing, a noise removal method is proposed based on the improved secretary bird optimization algorithm (ISBOA) optimized variational mode decomposition (VMD) combined with wavelet thresholding. First, the secretary bird optimization algorithm is improved by using the Newton-Raphson search rule and smooth exploitation variation strategy. Second, the ISBOA is used to select the key parameters in the VMD.

View Article and Find Full Text PDF

Background: Artificial intelligence (AI)-powered platforms may be used to ensure that clinically significant lung nodules receive appropriate management. We studied the impact of a commercially available AI natural language processing tool on detection of clinically significant indeterminate pulmonary nodules (IPNs) based on radiology reports and provision of guideline-consistent care.

Study Design: All computed tomography (CT) scans performed at a single tertiary care center in the outpatient or emergency room setting between 20-Feb-2024 and 20-March-2024 were processed by the AI natural language processing algorithm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!