Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Organometallic complexes including metal carbonyls have been widely utilized in academic and industrial settings for purposes ranging from teaching basic catalytic reactions to developing state-of-the-art electronic circuits. Characterization of these materials can be obtained via steady-state measurements; however, the intermediate photochemical events remain unclear, hindering effective and rational molecular engineering methods for new materials. We employed femtosecond transient absorption (fs-TA) and ground-state femtosecond stimulated Raman spectroscopy (FSRS) on triphenylbismuth-tungsten pentacarbonyl complex, a solution precursor for bimetallic oxide thin films. Upon 280 nm excitation into a charge-transfer band, an ultrafast bimetallic bond dissociation occurs within ∼140 fs. The subpicosecond nondiffusive solvation events are followed by ∼10 ps (15 ps) methanol (ethanol) complexation of the nascent tungsten pentacarbonyl intermediate, which mainly undergoes vibrational relaxation after crossing into a hot ground state. The ligand to axial CO is revealed to play a key role in the electronic and vibrational structure and dynamics of the complex. These findings could power rational design of bimetallic and functional solution precursors for the light-driven nanopatterning of thin films.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.0c02380 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!