Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: To remove blood vessel shadows from optical coherence tomography (OCT) images of the optic nerve head (ONH).
Methods: Volume scans consisting of 97 horizontal B-scans were acquired through the center of the ONH using a commercial OCT device for both eyes of 13 subjects. A custom generative adversarial network (named DeshadowGAN) was designed and trained with 2328 B-scans in order to remove blood vessel shadows in unseen B-scans. Image quality was assessed qualitatively (for artifacts) and quantitatively using the intralayer contrast-a measure of shadow visibility ranging from 0 (shadow-free) to 1 (strong shadow). This was computed in the retinal nerve fiber layer (RNFL), the inner plexiform layer (IPL), the photoreceptor (PR) layer, and the retinal pigment epithelium (RPE) layer. The performance of DeshadowGAN was also compared with that of compensation, the standard for shadow removal.
Results: DeshadowGAN decreased the intralayer contrast in all tissue layers. On average, the intralayer contrast decreased by 33.7 ± 6.81%, 28.8 ± 10.4%, 35.9 ± 13.0%, and 43.0 ± 19.5% for the RNFL, IPL, PR layer, and RPE layer, respectively, indicating successful shadow removal across all depths. Output images were also free from artifacts commonly observed with compensation.
Conclusions: DeshadowGAN significantly corrected blood vessel shadows in OCT images of the ONH. Our algorithm may be considered as a preprocessing step to improve the performance of a wide range of algorithms including those currently being used for OCT segmentation, denoising, and classification.
Translational Relevance: DeshadowGAN could be integrated to existing OCT devices to improve the diagnosis and prognosis of ocular pathologies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7396186 | PMC |
http://dx.doi.org/10.1167/tvst.9.2.23 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!