A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ensemble Deep Learning for Diabetic Retinopathy Detection Using Optical Coherence Tomography Angiography. | LitMetric

Purpose: To evaluate the role of ensemble learning techniques with deep learning in classifying diabetic retinopathy (DR) in optical coherence tomography angiography (OCTA) images and their corresponding co-registered structural images.

Methods: A total of 463 volumes from 380 eyes were acquired using the 3 × 3-mm OCTA protocol on the Zeiss Plex Elite system. Enface images of the superficial and deep capillary plexus were exported from both the optical coherence tomography and OCTA data. Component neural networks were constructed using single data-types and fine-tuned using VGG19, ResNet50, and DenseNet architectures pretrained on ImageNet weights. These networks were then ensembled using majority soft voting and stacking techniques. Results were compared with a classifier using manually engineered features. Class activation maps (CAMs) were created using the original CAM algorithm and Grad-CAM.

Results: The networks trained with the VGG19 architecture outperformed the networks trained on deeper architectures. Ensemble networks constructed using the four fine-tuned VGG19 architectures achieved accuracies of 0.92 and 0.90 for the majority soft voting and stacking methods respectively. Both ensemble methods outperformed the highest single data-type network and the network trained on hand-crafted features. Grad-CAM was shown to more accurately highlight areas of disease.

Conclusions: Ensemble learning increases the predictive accuracy of CNNs for classifying referable DR on OCTA datasets.

Translational Relevance: Because the diagnostic accuracy of OCTA images is shown to be greater than the manually extracted features currently used in the literature, the proposed methods may be beneficial toward developing clinically valuable solutions for DR diagnoses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7396168PMC
http://dx.doi.org/10.1167/tvst.9.2.20DOI Listing

Publication Analysis

Top Keywords

optical coherence
12
coherence tomography
12
deep learning
8
diabetic retinopathy
8
tomography angiography
8
ensemble learning
8
octa images
8
networks constructed
8
fine-tuned vgg19
8
majority soft
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!