Quantitative Structure Activity Relationship (QSAR) analysis techniques are tools largely utilized in many research fields, including drug discovery processes. In this work electronic descriptors are calculated with the Gaussian 03W software using the DFT method with the BecKe 3-parameters exchange functional and Lee-Yang-Parr correlation functional, with Kohn and Sham orbitals (KS) developed on a Gaussian Basis of type 6-31G (d), in combination with five Lipinski parameters that have been calculated with ChemOffice software, in order to develop a statistically verified 2D-QSAR model able to predict the biological activity of new molecules belonging to the same range of coumarins rather than chemical synthesis and biological evaluations that require more time and resources. Two QSAR models against both MCF-7 and HepG-2 cell lines are obtained using the multiple linear regression method. The predictive power of these models has been confirmed by internal and external validation. The Leverage method was used to determine the domain of applicability of the 2D-QSAR models developed. The results indicate that the best QSAR model is the one that links the 2D descriptors with the CDK inhibitory activity of the cell line (HepG-2) R = 0.748, Rcv = 0.618, MSE = 0.03 for the learning series and R = 0.73, MSE = 0.18 for the test series. This model implies that coumarin inhibitory activity is strongly related to dipole moment and the number of hydrogen bond donors. The results obtained suggest the importance of studying structure-activity relationships as a principal axis in drug design. The docking procedure using AutoDOCK Tools was also used to understand the mechanisms of molecular interactions and consequently, to develop new inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7424200PMC
http://dx.doi.org/10.1016/j.heliyon.2020.e04514DOI Listing

Publication Analysis

Top Keywords

inhibitory activity
8
activity
5
2d-qsar docking
4
docking study
4
study series
4
series coumarin
4
coumarin derivatives
4
derivatives inhibitors
4
inhibitors cdk
4
cdk anticancer
4

Similar Publications

Triterpene esters from Uncaria rhynchophylla hooks as potent HIV-1 protease inhibitors and their molecular docking study.

Sci Rep

December 2024

Department of Pharmacognosy, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.

Despite significant advancements with combination anti-retroviral agents, eradicating human immunodeficiency virus (HIV) remains a challenge due to adverse effects, adherence issues, and emerging viral resistance to existing therapies. This underscores the urgent need for safer, more effective drugs to combat resistant strains and advance acquired immunodeficiency syndrome (AIDS) therapeutics. Eight triterpene esters (1-8) were identified from Uncaria rhynchophylla hooks.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) presents a significant global health issue due to its widespread prevalence and the absence of a reliable vaccine for prevention. While significant progress has been achieved in therapeutic interventions since the disease was first identified, its resurgence underscores the need for innovative strategies to combat it. The nonstructural protein NS5A is crucial in the life cycle of the HCV, serving as a significant factor in both viral replication and assembly processes.

View Article and Find Full Text PDF

Metaplastic breast cancer (MpBC) is a highly chemoresistant subtype of breast cancer with no standardized therapy options. A clinical study in anthracycline-refractory MpBC patients suggested that nitric oxide synthase (NOS) inhibitor NG-monomethyl-l-arginine (L-NMMA) may augment anti-tumor efficacy of taxane. We report that NOS blockade potentiated response of human MpBC cell lines and tumors to phosphoinositide 3-kinase (PI3K) inhibitor alpelisib and taxane.

View Article and Find Full Text PDF

DNA helicases play a pivotal role in maintaining genome integrity by unwinding the DNA double helix and are often considered promising targets for drug development. However, assessing specific DNA helicase activity in living cells remains challenging. Herein, the first anchor-embedded duplex (ATED) probe, 17GC, is constructed to uniquely monitor the unwinding activity of Werner syndrome helicase (WRN), a clinical anticancer target.

View Article and Find Full Text PDF

Selective Colocalization of GHSR and GLP-1R in a Subset of Hypothalamic Neurons and Their Functional Interaction.

Endocrinology

November 2024

Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA); National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina.

The GH secretagogue receptor (GHSR) and the glucagon-like peptide-1 receptor (GLP-1R) are G protein-coupled receptors with critical, yet opposite, roles in regulating energy balance. Interestingly, these receptors are expressed in overlapping brain regions. However, the extent to which they target the same neurons and engage in molecular crosstalk remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!