Homogeneous nucleation of carbon dioxide in supersonic nozzles I: experiments and classical theories.

Phys Chem Chem Phys

William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA. and Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.

Published: September 2020

We studied the homogeneous nucleation of carbon dioxide in the carrier gas argon for concentrations of CO2 ranging from 2 to 39 mole percent using three experimental methods. Position-resolved pressure trace measurements (PTM) determined that the onset of nucleation occurred at temperatures between 75 and 92 K with corresponding CO2 partial pressures of 39 to 793 Pa. Small angle X-ray scattering (SAXS) measurements provided particle size distributions and aerosol number densities. Number densities of approximately 1012 cm-3, and characteristic times ranging from 6 to 13 μs, resulted in measured nucleation rates on the order of 5 × 1017 cm-3 s-1, values that are consistent with other nucleation rate measurements in supersonic nozzles. Finally, we used Fourier transform infrared (FTIR) spectroscopy to identify that the condensed CO2 particles were crystalline cubic solids with either sharp or rounded corners. Molecular dynamics simulations, however, suggest that CO2 forms liquid-like critical clusters before transitioning to the solid phase. Furthermore, the critical clusters are not in thermal equilibrium with the carrier gas. Comparisons with nucleation theories were therefore made assuming liquid-like critical clusters and incorporating non-isothermal correction factors.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp02279aDOI Listing

Publication Analysis

Top Keywords

critical clusters
12
homogeneous nucleation
8
nucleation carbon
8
carbon dioxide
8
supersonic nozzles
8
carrier gas
8
number densities
8
liquid-like critical
8
nucleation
5
dioxide supersonic
4

Similar Publications

Intussusception is a leading cause of acute intestinal obstruction in infants, typically presenting with a classic triad of intermittent abdominal pain, vomiting, and currant jelly stools. However, atypical presentations can lead to diagnostic delays, increasing the risk of complications. This report describes a seven-month-old male with an unusual presentation of lethargy and irritability, without overt gastrointestinal symptoms.

View Article and Find Full Text PDF

Antarmycins: Discovery, Biosynthesis, Anti-pathogenic Bacterial Activity, and Mechanism of Action from Deep-Sea-Derived .

JACS Au

January 2025

CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.

The rapid emergence of antimicrobial-resistant pathogenic microbes has accelerated the search for novel therapeutic agents. Here we report the discovery of antarmycin A (), an antibiotic containing a symmetric 16-membered macrodiolide core with two pendant vancosamine moieties, one of which is glucosylated, from deep-sea-derived SCSIO 07407. The biosynthetic gene cluster of was identified on a giant plasmid featuring transferable elements.

View Article and Find Full Text PDF

Introduction: Artificial Intelligence (AI) is a transformative technology impacting various sectors of society and the economy. Understanding the factors influencing AI adoption is critical for both research and practice. This study focuses on two key objectives: (1) validating an extended version of the Technology Acceptance Model (TAM) in the context of AI by integrating the Big Five personality traits and AI mindset, and (2) conducting an exploratory k-prototype analysis to classify AI adopters based on demographics, AI-related attitudes, and usage patterns.

View Article and Find Full Text PDF

The analysis of nonadiabatic molecular dynamics (NAMD) data presents significant challenges due to its high dimensionality and complexity. To address these issues, we introduce ULaMDyn, a Python-based, open-source package designed to automate the unsupervised analysis of large datasets generated by NAMD simulations. ULaMDyn integrates seamlessly with the Newton-X platform and employs advanced dimensionality reduction and clustering techniques to uncover hidden patterns in molecular trajectories, enabling a more intuitive understanding of excited-state processes.

View Article and Find Full Text PDF

Patient-centered outcomes, such as quality of life and length of hospital stay, are the focus in a wide array of clinical studies. However, participants in randomized trials for elderly or critically and severely ill patient populations may have truncated or undefined non-mortality outcomes if they do not survive through the measurement time point. To address truncation by death, the survivor average causal effect has been proposed as a causally interpretable subgroup treatment effect defined under the principal stratification framework.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!