Differential Stability of Aurein 1.2 Pores in Model Membranes of Two Probiotic Strains.

J Chem Inf Model

Departamento de Física Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 1, Buenos Aires 1428, Argentina.

Published: October 2020

Aurein 1.2 is an antimicrobial peptide from the skin secretion of an Australian frog. In the previous experimental work, we reported a differential action of aurein 1.2 on two probiotic strains subsp. (CIDCA 331) and subsp. (CIDCA 133). The differences found were attributed to the bilayer compositions. Cell cultures and CIDCA 331-derived liposomes showed higher susceptibility than the ones derived from the CIDCA 133 strain, leading to content leakage and structural disruption. Here, we used molecular dynamics simulations to explore these systems at the atomistic level. We hypothesize that if the antimicrobial peptides organized themselves to form a pore, it will be more stable in membranes that emulate the CIDCA 331 strain than in those of the CIDCA 133 strain. To test this hypothesis, we simulated preassembled aurein 1.2 pores embedded into bilayer models that emulate the two probiotic strains. It was found that the general behavior of the systems depends on the composition of the membrane rather than the preassemble system characteristics. Overall, it was observed that aurein 1.2 pores are more stable in the CIDCA 331 model membranes. This fact coincides with the high susceptibility of this strain against antimicrobial peptide. In contrast, in the case of the CIDCA 133 model membranes, peptides migrate to the water-lipid interphase, the pore shrinks, and the transport of water through the pore is reduced. The tendency of glycolipids to make hydrogen bonds with peptides destabilizes the pore structures. This feature is observed to a lesser extent in CIDCA 331 due to the presence of anionic lipids. Glycolipid transverse diffusion (flip-flop) between monolayers occurs in the pore surface region in all the cases considered. These findings expand our understanding of the antimicrobial peptide resistance properties of probiotic strains.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.0c00855DOI Listing

Publication Analysis

Top Keywords

probiotic strains
16
cidca 331
16
cidca 133
16
aurein pores
12
model membranes
12
antimicrobial peptide
12
cidca
9
subsp cidca
8
133 strain
8
aurein
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!