Engineering a facile and controllable approach to modulate the spectral properties of lanthanide-doped upconversion nanoparticles (UCNPs) is always an ongoing challenge. Herein, long-range ordered, distinct two-dimensional (2D) binary nanoparticle superlattices (BNSLs) composed of NaREF :Yb/Er (RE = Y and Gd) UCNPs and plasmonic metallic nanoparticles (Au NPs), including AB, AB , and AB lattices, are fabricated via a slow evaporation-driven self-assembly to achieve plasmonic modulation of upconversion luminescence (UCL). Optical measurements reveal that typical red-green UCL from UCNPs can be effectively modulated into reddish output in BNSLs, with a drastically shortened lifetime. Notably, for AB - and AB -type BNSLs with more proximal Au NPs around each UCNP, modified UCL with fine-structured spectral lineshape is observed. These differences could be interpreted by the interplay of collective plasmon resonance introduced by 2D periodic Au arrays and spectrally selective energy transfer between UCNPs and Au. Thus, fabricating UCNP-Au BNSLs with desired lattice parameters and NP configurations could be a promising way to tailor the UCL through controlled plasmonic modulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202002066 | DOI Listing |
RSC Adv
January 2025
Nanoscience Research Laboratory, Department of Chemistry, Shivaji University Kolhapur 416 004 Maharashtra India
This research investigates the microbial inactivation potential of ternary TiO-CuO-chitosan nanocomposites (TCC NCs) applied as surface coatings on cowhide leather. Initially, bare TiO nanoparticles (NPs) and binary TiO-CuO (TC) NCs, with varying CuO NPs content, were prepared using an sol-gel method. These binary TC NCs were then modified with chitosan at varying weight percentages (2%, 4%, 6%, and 8%).
View Article and Find Full Text PDFAnal Chem
January 2025
School of Metallurgy, Northeastern University, Shenyang 110819, China.
Sensitive H sensors play key roles in the large-scale and safe applications of H. In this study, we developed novel ternary Pd-loaded SnO@WO core-shell structures by hydrothermal and reduction methods. The compositions of the optimized ternary core-shell structures (Pd-SW-2) are prepared on the basis of the optimal binary core-shell structures (SW-X) according to the sensing performances to H.
View Article and Find Full Text PDFActa Biomater
January 2025
Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China. Electronic address:
Immune checkpoint blockers (ICBs)-based immunotherapy is a favorable approach for efficient triple-negative breast cancer (TNBC) treatment. However, the therapeutic efficacy of ICBs is greatly compromised by immunosuppressive tumor microenvironments (TMEs) and low expression levels of programmed cell death ligand-1 (PD-L1). Herein, we constructed an amphiphilic prodrug by linking a hydrophobic STING agonist, MSA-2 and a hydrophilic chemotherapeutic drug, gemcitabine (GEM) via an ester bond, which can self-assemble into GEM-MSA-2 (G-M) nanoparticles (NPs) with a tumor growth inhibition (TGI) value of 87.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Faculty of Mechanical Engineering, Technical University of Liberec, 461 17 Liberec, Czech Republic.
The objective of the present work was to prepare hybrid epoxy composites with improved mechanical and thermal properties. The simultaneous use of two different modifiers in an epoxy resin was motivated by the expected occurrence of synergistic effects on the performance properties of the matrix. Such a hybrid composite can be used in more severe conditions and/or in broader application areas.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
Colloidal crystal engineering enables the precise construction of structures with remarkable properties. However, the flexible and synergistic regulation of multiple properties of colloidal crystals remains a significant challenge. Here, we inspire from Brazilian opals to self-assemble polymer nanoparticles in the gaps of a single-layer opal substrate to fabricate large-scale binary colloidal crystals (BCCs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!