Objectives: To produce a novel injectable treated dentin matrix hydrogel (TDMH) to be used as a novel pulp-capping agent for dentin regeneration compared with Biodentine and MTA.

Materials And Methods: Thirty intact fully erupted premolars scheduled to be extracted for orthodontic reasons were included. Pulps were mechanically exposed in the middle of the cavity floor. TDMH was composed of TDM powder (500-μm particle size) and sodium alginate as an injectable scaffold. The capped teeth were divided into three equal groups (n = 10): TDMH, Biodentine, and MTA respectively. Clinical examination and assessment of periapical response were performed. The teeth were extracted after 2-weeks and 2-month intervals, stained with hematoxylin-eosin, and categorized by using a histologic scoring system. Statistical analysis was performed using chi-square and Kruskal-Wallis test (p = 0.05).

Results: All teeth were vital during observation periods. Histological analysis after 2 months showed complete dentin bridge formation and absence of inflammatory pulp response with no significant differences between groups. However, the formed dentin was significantly thicker with the TDMH group with layers of well-arranged odontoblasts that were found to form a homogenous tubular structure with numerous dentinal tubule lines showing a positive trend to dentin regeneration.

Conclusions: TDMH could achieve dentin regeneration and conservation of pulp vitality and might serve as a feasible natural substitute for silicate-based cements in restoring in vivo dentin defect in direct pulp-capping procedure.

Trial Registration: PACTR201901866476410.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00784-020-03521-zDOI Listing

Publication Analysis

Top Keywords

dentin
8
treated dentin
8
dentin matrix
8
matrix hydrogel
8
dentin regeneration
8
tdmh
5
histological evaluation
4
evaluation regenerative
4
regenerative potential
4
potential novel
4

Similar Publications

This study aimed to evaluate the histological success of pulpotomy in primary molars using white mineral trioxide aggregate (WMTA) mixed with 2.25% sodium hypochlorite (NaOCl) gel and to evaluate in vitro its physical and chemical properties. The study had a clinical stage and an in-vitro stage.

View Article and Find Full Text PDF

Objectives: This study aimed to verify if composites containing dicalcium phosphate dihydrate particles (DCPD) are able to induce dentin remineralization in vitro. Additionally, the mechanical properties of the materials were tested.

Methods: Four composites with 50 vol% inorganic content and 1 BisGMA: 1 TEGDMA (mols) were prepared, with different DCPD:glass ratios (50:0, 40:10, 30:20 and 0:50).

View Article and Find Full Text PDF

Effect of cavity designs on instrumentation, obturation and fracture resistance of mandibular first premolars with Vertucci V canal.

J Endod

December 2024

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237# Luoyu Road, Wuhan 430079, People's Republic of China. Electronic address:

Introduction: This study aimed to assess the effect of cavity designs on instrumentation, obturation and fracture resistance for mandibular first premolars with Vertucci V canal.

Methods: Mandibular first premolars with Vertucci V canal were scanned with micro-CT. 20 teeth with moderately curved canal were prepared with conservative endodontic cavity (CEC/M) or traditional endodontic cavity (TEC/M), and 30 with severely curved canal were prepared with CEC (CEC/S), modified CEC (MCEC/S) or TEC (TEC/S).

View Article and Find Full Text PDF

Objectives: This study aimed to investigate cracked teeth and vertical root fracture observable on micro-CT images of extracted roots of mandibular incisors, after fiber post removal.

Materials And Methods: Thirty mandibular incisors were selected with any degree of slight incisal wear inspected with the aid of a stereomicroscope under 12x magnification, in order to have a group of young adult specimens according to the criteria of Hugoson et al. A sample of twelve mandibular incisors were selected, aged between 20 and 30 years old, with similar dentine volume and thickness.

View Article and Find Full Text PDF

Residual dentin thickness and biomechanical performance of post-and-core-restored mandibular premolars: A finite element analysis study.

J Prosthet Dent

December 2024

Associate Chief Physician, Department of Prosthodontic, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, PR China. Electronic address:

Statement Of Problem: Endodontically treated teeth often require post-and-core restorations for structural support because of extensive hard tissue loss. Assessment of the effect of the residual dentin thickness on the biomechanical performance of these restorations is lacking.

Purpose: The purpose of this study was to evaluate the residual dentin thickness in mandibular premolars after post-and-core restorations using cone beam computed tomography (CBCT) and to analyze the stress distribution with finite element analysis (FEA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!