Cold gas in the Milky Way's nuclear wind.

Nature

Research School of Astronomy and Astrophysics, The Australian National University, Canberra, Australian Capital Territory, Australia.

Published: August 2020

The centre of the Milky Way hosts several high-energy processes that have strongly affected the inner regions of our Galaxy. Activity from the super-massive black hole at the Galactic Centre, which is coincident with the radio source Sagittarius A*, and stellar feedback from the inner molecular ring expel matter and energy from the disk in the form of a galactic wind. Multiphase gas has been observed within this outflow, including hot highly ionized (temperatures of about 10 kelvin), warm ionized (10 to 10 kelvin) and cool atomic (10 to 10 kelvin) gas. However, so far there has been no evidence of the cold dense molecular phase (10 to 100 kelvin). Here we report observations of molecular gas outflowing from the centre of our Galaxy. This cold material is associated with atomic hydrogen clouds travelling in the nuclear wind. The morphology and the kinematics of the molecular gas, resolved on a scale of about one parsec, indicate that these clouds are mixing with the warmer medium and are possibly being disrupted. The data also suggest that the mass of the molecular gas outflow is not negligible and could affect the rate of star formation in the central regions of the Galaxy. The presence of this cold, dense and high-velocity gas is puzzling, because neither Sagittarius A* at its current level of activity nor star formation in the inner Galaxy seems to be a viable source for this material.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-020-2595-zDOI Listing

Publication Analysis

Top Keywords

molecular gas
12
nuclear wind
8
regions galaxy
8
cold dense
8
star formation
8
gas
6
molecular
5
cold
4
cold gas
4
gas milky
4

Similar Publications

Background: Streptococcal Toxic Shock Syndrome (STSS) is a life-threatening condition caused by bacterial toxins. The STSS triad encompasses high fever, hypotensive shock, and a "sunburn-like" rash with desquamation. STSS, like Toxic Shock Syndrome (TSS), is a rare complication of streptococcal infec-tions caused by Group A Streptococcus (GAS), Streptococcal pyogenes (S.

View Article and Find Full Text PDF

Purkay. is a lesser-known species of holly (family Aquifoliaceae) that is endemic to Northeast India. Designated as critically endangered, the plant is used in the treatments of bacterial infections, cancer, intestinal helminthiasis, tuberculosis, and viral infections.

View Article and Find Full Text PDF

The quantification of proteoforms, i.e., all molecular forms in which proteins can be present, by top-down proteomics provides essential insights into biological processes at the molecular level.

View Article and Find Full Text PDF

Radioactive molecular iodine (I) is a critical volatile pollutant generated in nuclear energy applications, necessitating sensors that rapidly and selectively detect low concentrations of I vapor to protect human health and the environment. In this study, we design and prepare a three-component sensing material comprising reduced graphene oxide (rGO) as the substrate, silver iodide (AgI) particles as active sites, and polystyrene sulfonate as an additive. The AgI particles enable reversible adsorption and conversion of I molecules into polyiodides, inducing substantial charge density variation in rGO.

View Article and Find Full Text PDF

Ultrasensitive Flexible NO Sensors with Remote-Controllable ADC-Electropolymerized Conducting Polymers on Plastic.

ACS Nano

January 2025

SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea.

Alternating- and direct-current (ADC) bipolar electropolymerization (EP) offers an efficient and scalable approach for the lateral synthesis of conjugated macromolecules, enabling the simultaneous polymerization and deposition of large conducting polymer films with intriguing fractal-like ramified topographies onto arbitrary insulating substrates under remote control. In this study, we presented the remote synthesis of poly(3,4-ethylenedioxythiophene) (PEDOT):anion sensing films on a plastic substrate, aimed at their use in flexible nitrogen dioxide (NO) gas sensors. Notably, the PEDOT:ClO films exhibited excellent gas-sensing characteristics, with a sensitivity of 54.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!