The primary aim of this study was to investigate the functional, physiological and subjective responses to NMES exercise in cancer patients. Participants with a cancer diagnosis, currently undergoing treatment, and an had an Eastern Cooperative Oncology Group (ECOG) performance status (ECOG) of 1 and 2 were recommended to participate by their oncologist. Following a 2-week, no-NMES control period, each participant was asked to undertake a concurrent NMES exercise intervention over a 4-week period. Functional muscle strength [30 s sit-to-stand (30STS)], mobility [timed up and go (TUG)], exercise capacity [6-min walk test (6MWT)] and health related quality of life (HR-QoL) were assessed at baseline 1 (BL1), 2-week post control (BL2) and post 4-week NMES exercise intervention (POST). Physiological and subjective responses to LF-NMES were assessed during a 10-stage incremental session, recorded at BL2 and POST. Fourteen participants [mean age: 62 years (10)] completed the intervention. No adverse events were reported. 30STS (+ 2.4 reps, p = .007), and 6MWT (+ 44.3 m, p = .028) significantly improved after the intervention. No changes in TUG or HR-QoL were observed at POST. Concurrent NMES exercise may be an effective exercise intervention for augmenting physical function in participants with cancer and moderate and poor functional status. Implications for cancer survivors: By allowing participants to achieve therapeutic levels of exercise, concurrent NMES may be an effective supportive intervention in cancer rehabilitation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7438511PMC
http://dx.doi.org/10.1038/s41598-020-71006-wDOI Listing

Publication Analysis

Top Keywords

nmes exercise
20
physiological subjective
12
subjective responses
12
concurrent nmes
12
exercise intervention
12
functional physiological
8
exercise
8
cancer survivors
8
participants cancer
8
bl2 post
8

Similar Publications

This study aimed to assess and compare the effectiveness of adding low-level laser therapy (LLLT) and neuromuscular electrical nerve stimulation (NMES) to conventional physical therapy exercises, for stroke patients with hemiplegic shoulder pain (HSP). Seventy-five stroke patients with shoulder pain were included in this prospective randomized controlled study. Participants were divided into three groups.

View Article and Find Full Text PDF

Objective: the study aimed to analyze the therapeutic effects of neuromuscular electrical stimulation (NMES) combined with respiratory muscle training (RMT) on patients with moderate-to-severe chronic obstructive pulmonary disease (COPD).

Methods: 135 patients with moderate/severe chronic obstructive pulmonary disease were selected as the research object and randomly selected. 72 cases were divided into rehabilitation group and 63 cases in control group.

View Article and Find Full Text PDF

The additive effect of neuromuscular electrical stimulation and resistance training on muscle mass and strength.

Eur J Appl Physiol

January 2025

Metabolic, Nutrition, and Exercise Research (MiNER) Laboratory, Department of Kinesiology, University of Texas at El Paso, 500 University Ave, El Paso, TX, 79968, USA.

Article Synopsis
  • The study aims to compare the effectiveness of conventional resistance training (RT) versus a combination of resistance training and neuromuscular electrical stimulation (RT + NMES) in developing strength and muscle mass.
  • Researchers conducted a meta-analysis of 13 randomized controlled trials, finding that RT + NMES resulted in greater strength and muscle mass gains compared to RT alone.
  • The conclusion suggests that incorporating NMES into resistance training could enhance muscle strength and mass, and further research is encouraged to investigate its effects on metabolic and cardiovascular health.
View Article and Find Full Text PDF

: Previous studies have shown that neuromuscular electrical stimulation (NMES), while expensive, can provide some of the health benefits of exercise to people who cannot exercise their legs normally. The aim of this study was to quantify the increases in muscle metabolism in four muscles of the legs of able-bodied individuals with NMES. : Healthy college-aged students were tested.

View Article and Find Full Text PDF

Unlocking the potential of neuromuscular electrical stimulation: achieving physical activity benefits for all abilities.

Front Sports Act Living

November 2024

Integrative Orthopedic Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.

Neuromuscular Electrical Stimulation (NMES) uses electrical impulses to induce muscle contractions, providing benefits in rehabilitation, muscle activation, and as an adjunct to exercise, particularly for individuals experiencing immobilization or physical disability. NMES technology has significantly progressed, with advancements in device development and a deeper understanding of treatment parameters, such as frequency, intensity, and pulse duration. These improvements have expanded NMES applications beyond rehabilitation to include enhanced post-exercise recovery, improved blood glucose uptake, and increased lower limb venous return, potentially reducing thrombotic risks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!