Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: The purpose of this study was to improve the accuracy of dose-distribution calculations by understanding how the calculated dose varies with the change in the relative electron density replacing polymethyl methacrylate (PMMA) in patient-specific quality assurance.
Method: We calculated the relative electron density at which dose attenuation in each dose calculation algorithm coincides with the measured value of the dose attenuation of single-field irradiation. Next, the dose change was calculated by changing the relative electron density or physical electron density for substituting PMMA for each X-ray energy and calculation algorithm. Furthermore, using clinical plans, changes in point-dose verification and dose-distribution verification that occurred when the relative electron density or physical electron density was varied were investigated.
Results: The dose attenuation varies depending on the dose-calculation algorithm, and the optimum value of the electron density is different for each. After the electron density optimization, the point dose verification using the 97.1% to 98.3% (3%/3 mm), 90.0% to 94.3% (2%/3 mm) and gained a dominant improvement tendency (P<0.001).
Conclusions: We clarified dose change accompanying relative electron density or physical electron density change. We concluded that the accuracy of dose-distribution calculation for verification improves by replacing PMMA with optimal relative electron density or physical electron density.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.6009/jjrt.2020_JSRT_76.8.808 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!