A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Artificial intelligence-assisted cytology for detection of cervical intraepithelial neoplasia or invasive cancer: A multicenter, clinical-based, observational study. | LitMetric

Objective: Artificial intelligence (AI) could automatedly detect abnormalities in digital cytological images, however, the effect in cervical cancer screening is inconclusive. We aim to evaluate the performance of AI-assisted cytology for the detection of histologically cervical intraepithelial lesions (CIN) or cancer.

Methods: We trained a supervised deep learning algorithm based on 188,542 digital cytological images. Between Mar 13, 2017, and Oct 20, 2018, 2145 referral women from organized screening were enrolled in a multicenter, clinical-based, observational study. Cervical specimen was sampled to generate two liquid-based slides: one random slide was allocated to AI-assisted reading, and the other to manual reading conducted by skilled cytologists from senior hospital and cytology doctors from primary hospitals. HPV testing and colposcopy-directed biopsy was performed, and histological result was regarded as reference. We calculated the relative sensitivity and relative specificity of AI-assisted reading compared to manual reading for CIN2+. This trial was registered, number ChiCTR2000034131.

Results: In the referral population, AI-assisted reading detected 92.6% of CIN 2 and 96.1% of CIN 3+, significantly higher than or similar to manual reading. AI-assisted reading had equivalent sensitivity (relative sensitivity 1.01, 95%CI, 0.97-1.05) and higher specificity (relative specificity 1.26, 1.20-1.32) compared to skilled cytologists; whereas higher sensitivity (1.12, 1.05-1.20) and specificity (1.36, 1.25-1.48) compared to cytology doctors. In HPV-positive women, AI-assisted reading improved specificity for CIN1 or less at no expense of reduction of sensitivity compared to manual reading.

Conclusions: AI-assisted cytology may contribute to the primary cytology screening or triage. Further studies are needed in general population.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygyno.2020.07.099DOI Listing

Publication Analysis

Top Keywords

ai-assisted reading
20
manual reading
12
cytology detection
8
cervical intraepithelial
8
multicenter clinical-based
8
clinical-based observational
8
observational study
8
digital cytological
8
cytological images
8
ai-assisted cytology
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!