Background: Forest habitats are important biodiversity refuges for a wide variety of bird species. Parasitism may modulate host species presence and abundance, and parasite effects can change according to forest management practices. Such processes are not well studied in vector-borne avian haemosporidians. We analyzed the effects of forest management on bird-dipteran-haemosporidian interactions, using seven common bird species in managed and unmanaged beech forest habitats in northeastern Germany. We assumed that forest structural heterogeneity affects parasite population parameters in avian hosts (i.e., prevalence and parasitemia), through its effect on the condition of the avian host but also through varying vector abundances.
Results: Parasite prevalence was high (about 80%) and homogeneous across different beech forest categories (i.e., young, old, unmanaged) and for all bird species, except Erithacus rubecula (35%). Parasitemia varied across bird species but not across forest categories within each avian species (lowest parasitemia were found in E. rubecula, Turdus merula, and Turdus philomelos). In our study system, we found that vector abundance was not the main driver of parasite dynamics. We found that forest structure affects parasite infection probability directly and potentially host condition via available resources that have to be used either to combat infections (i.e., high parasitemia) or to maintain a good body condition.
Conclusions: The effects of each of the predictors were bird species-specific, and we found that Diptera vectors were not the foremost influence in our host-vector-parasite system. Effects of forest habitat variables indicated that for most bird species in this study, habitat regulation of infection probability was more likely (i.e., E. rubecula, Fringilla coelebs, Sylvia atricapilla), whereas for Parus major habitat characteristics impacted first individuals' body condition and subsequently the probability of infection. Our findings emphasize the need of species-specific analyses and to use continuous forest structural parameters (e.g., the proportion of gap, south facing aspect) to better understand habitat and land use effects on host-vector-parasite dynamics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7437053 | PMC |
http://dx.doi.org/10.1186/s12898-020-00315-5 | DOI Listing |
Sci Rep
December 2024
Department of Biology, University of Oxford, Mansfield Road, Oxford, OX1 3SZ, UK.
Long-distance migrants must optimise their timing of breeding to capitalise on resources at both breeding and over-wintering sites. In species with protracted breeding seasons, departing earlier on migration might be advantageous, but is constrained by the ongoing breeding attempt. Here we investigated how breeding timing affects migratory strategies in the Manx shearwater (Puffinus puffinus), a trans-hemispheric migratory seabird with large temporal variation in the onset of breeding.
View Article and Find Full Text PDFSci Rep
December 2024
School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NZ, UK.
Worldwide museums hold collections of eggshells representing material for descriptive studies. However, an obstacle to this is the lack of information about the original contents and weight of the entire egg (W). This study aimed to fill this gap though development of a methodological mechanism for calculating the volume of the egg interior (V), its density (D) and W.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Food Science and Technology, Sindos Campus, International Hellenic University, 57400, Thessaloniki, Greece.
Microalgae, have emerged as a potentially promising feed additive option due to their beneficial nutritional profile rich in bioactive compounds. The present study examines the incorporation of Chlorella sorokiniana (at 0.1% and 1%) into chicken feed compared to control feed and its effect on growth and health parameters of poultry grown at pilot plant scale.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA.
The lamprey, a primitive jawless vertebrate whose ancestors diverged from all other vertebrates over 500 million years ago, offers a unique window into the ancient formation of the retina. Using single-cell RNA-sequencing, we characterize retinal cell types in the lamprey and compare them to those in mouse, chicken, and zebrafish. We find six cell classes and 74 distinct cell types, many shared with other vertebrate species.
View Article and Find Full Text PDFNat Commun
December 2024
State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China.
Human ANP32A/B (huANP32A/B) poorly support the polymerase activity of avian influenza viruses (AIVs), thereby limiting interspecies transmission of AIVs from birds to humans. The SUMO-interacting motif (SIM) within NS2 promotes the adaptation of AIV polymerase to huANP32A/B via a yet undisclosed mechanism. Here we show that huANP32A/B are SUMOylated by the E3 SUMO ligase PIAS2α, and deSUMOylated by SENP1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!