IMPARO: inferring microbial interactions through parameter optimisation.

BMC Mol Cell Biol

Research School of Electrical, Energy and Materials Engineering, College of Engineering & Computer Science, Australian National University, Acton, 2601, Australia.

Published: August 2020

Background: Microbial Interaction Networks (MINs) provide important information for understanding bacterial communities. MINs can be inferred by examining microbial abundance profiles. Abundance profiles are often interpreted with the Lotka Volterra model in research. However existing research fails to consider a biologically meaningful underlying mathematical model for MINs or to address the possibility of multiple solutions.

Results: In this paper we present IMPARO, a method for inferring microbial interactions through parameter optimisation. We use biologically meaningful models for both the abundance profile, as well as the MIN. We show how multiple MINs could be inferred with similar reconstructed abundance profile accuracy, and argue that a unique solution is not always satisfactory. Using our method, we successfully inferred clear interactions in the gut microbiome which have been previously observed in in-vitro experiments.

Conclusions: IMPARO was used to successfully infer microbial interactions in human microbiome samples as well as in a varied set of simulated data. The work also highlights the importance of considering multiple solutions for MINs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7436957PMC
http://dx.doi.org/10.1186/s12860-020-00269-yDOI Listing

Publication Analysis

Top Keywords

microbial interactions
12
inferring microbial
8
interactions parameter
8
parameter optimisation
8
mins inferred
8
abundance profiles
8
biologically meaningful
8
abundance profile
8
microbial
5
mins
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!