The annual Zea mays ssp. mexicana L. is a member of the teosinte group and a close wild relative of maize. Thus, Zea mays ssp. mexicana L. can be effectively used in maize breeding. AtCCHA1 is a Mn and/or Ca/H antiporter localized in chloroplasts in Arabidopsis. In this study, its homolog from Zea mays ssp. mexicana L., ZmmCCHA1, was isolated and characterized. The transcriptional level of ZmmCCHA1 in Zea mays ssp. mexicana L. was repressed in response to excessive Ca or Mn. Heterologous functional complementation assays using yeast mutants showed that ZmmCCHA1 mediates Ca and Mn transport. The ZmmCCHA1 protein was localized in the chloroplasts when expressed in tobacco leaves. Furthermore, ectopic overexpression of ZmmCCHA1 in the Arabidopsis ccha1 mutant rescued the mutant defects on growth and the photosynthetic proteins in the thylakoid membranes. Moreover, the photosynthetic phenotypes of Arabidopsis ccha1 mutant at steady-state were greatly but not completely complemented by the overexpression of ZmmCCHA1. In addition, overexpressing the ZmmCCHA1 rescued the sensitives of PSII in the Arabidopsis ccha1 mutant to Mn deficiency or high Ca condition. These results indicate that the isolated ZmmCCHA1 is the homolog of AtCCHA1 and plays a conserved role in maintaining the Mn and/or Ca homeostasis in chloroplasts which is critical for the function of PSII in photosynthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2020.08.002 | DOI Listing |
Sci Rep
December 2024
International Maize and Wheat Improvement Center (CIMMYT), United Nations Avenue, Gigiri, PO Box 25171, Nairobi, Kenya.
Hybrid maize seed production in Africa is dependent upon manual detasseling of the female parental lines, often resulting in plant damage that can lead to reduced seed yields on those detasseled lines. Additionally, incomplete detasseling can result in hybrid purity issues that can lead to production fields being rejected. A unique nuclear genetic male sterility seed production technology, referred to as Ms44-SPT, was developed to avoid hybrid seed loss and to improve the purity and quality of hybrid maize production.
View Article and Find Full Text PDFSci Rep
December 2024
Institute of Agricultural Biotechnology/Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun, China.
The increasing development of new genetically modified organisms underscores the critical need for comprehensive safety assessments, emphasizing the significance of molecular evidence such as gene integration, copy numbers, and adjacent sequences. In this study, the maize nitrate-efficient utilization gene ZmNRT1.1 A was introduced into maize variety y822 using transgenic technology, producing transgenic maize events ND4401 and ND4403 with enhanced tolerance to low nitrogen stress.
View Article and Find Full Text PDFSci Rep
December 2024
College of Agronomy, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China.
Brace roots are the primary organs for water and nutrient absorption, and play an important role in lodging resistance. Dissecting the genetic basis of brace root traits will facilitate breeding new varieties with lodging resistance and high yield. In present study, genome-wide association study (GWAS) and genomic selection (GS) for brace root penetrometer resistance (PR), root number (RN), and tier number (TN) were conducted in a multi-parent doubled haploid (DH) population.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
Climate change has caused many challenges to soil ecosystems, including soil salinity. Consequently, many strategies are advised to mitigate this issue. In this context, biochar is acknowledged as a useful addition that can alleviate the detrimental impacts of salt stress on plants.
View Article and Find Full Text PDFNat Commun
December 2024
Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
Lipid metabolism is critical for male reproduction in plants. Many lipid-metabolic genic male-sterility (GMS) genes function in the anther tapetal endoplasmic reticulum, while little is known about GMS genes involved in de novo fatty acid biosynthesis in the anther tapetal plastid. In this study, we identify a maize male-sterile mutant, enr1, with early tapetal degradation, defective anther cuticle, and pollen exine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!