Ketogenic diet attenuates aging-associated myocardial remodeling and dysfunction in mice.

Exp Gerontol

Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China. Electronic address:

Published: October 2020

AI Article Synopsis

  • The study investigated the effects of a ketogenic diet (KD) on heart aging in mice, focusing on heart structure and function improvements.
  • KD in aged mice resulted in reduced heart size and increased heart function indicators, alongside decreases in heart cell size and fibrosis.
  • The KD also improved mitochondrial function and reduced oxidative stress markers, suggesting it may delay cardiac aging by enhancing autophagy and mitochondrial health.

Article Abstract

Cardiac aging is manifested as unfavorable geometric and functional alterations in heart. The current work was to test whether a ketogenic diet (KD) impacted aging-associated myocardial remodeling and dysfunction in mice and investigate the underlying mechanism. The young and aged male mice were fed with KD or standard chow for four months. Echocardiography results revealed that KD decreased left ventricular end systolic diameter (LVESD) and increased fractional shortening in aged mice. With KD feeding, aged mice exhibited reduced cardiomyocyte cross-sectional area, fibrosis, and mRNA expression of atrial natriuretic peptide (ANP), Col1A1 and alpha smooth muscle actin (α-SMA) in myocardium. KD enhanced activities of superoxide dismutase 2 (SOD2), glutathione peroxidase (GPx) and catalase, and reduced the levels of malondialdehyde (MDA) and 3-nitrotyrosine (3-NT) in myocardium of aged mice. KD led to a downregulation of expression of C/EBP homologous protein (CHOP), glucose regulated protein 78 (GRP78), cleaved activated transcription factor 6 (ATF6), and spliced X box-binding protein 1 (XBP-1 s) in myocardium of aged mice. KD in aged mice reduced mitochondrial reactive oxygen species (ROS) formation, enhanced mitochondrial ATP production and mitochondrial membrane potential (MMP), and preserved activity of complex III and electron-coupling capacities between complexes I and III and between complexes II and III in myocardium. Importantly, KD in aged mice promoted autophagic flux, evidenced by reduced protein expression of p62 and enhanced protein expression of lysosome-associated membrane protein-2 (Lamp2) in myocardium. In conclusion, long-time KD intake delayed cardiac aging in male mice, possibly through abating oxidative stress, improving mitochondrial function, and promoting autophagic flux.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exger.2020.111058DOI Listing

Publication Analysis

Top Keywords

aged mice
24
mice
10
ketogenic diet
8
aging-associated myocardial
8
myocardial remodeling
8
remodeling dysfunction
8
dysfunction mice
8
cardiac aging
8
male mice
8
myocardium aged
8

Similar Publications

Backgrounds And Aims: CD8+T cells are crucially associated with the fight against hepatitis B virus (HBV) infection. CD161 has been shown to express remarkably on HCV-specific CD8+T cells. However, the accurate function of CD161+CD8+T cells in HBV immunity or pathogenesis remains undetermined.

View Article and Find Full Text PDF

Renal fibrosis (RF) is a crucial pathological factor in the progression of chronic kidney disease (CKD) to end-stage renal failure, and accurate and noninvasive assays to monitor the progression of renal fibrosis are needed. Circular RNAs (circRNAs) are noncoding RNAs that can be used as diagnostic biomarkers and therapeutic targets for human diseases. In this study, we analysed the expression of hsa_circ_0008925 in human urinary renal tubular cells and investigated its role in renal fibrosis.

View Article and Find Full Text PDF

Objective: Cervical cancer is a common malignancy among women, and radiotherapy remains a primary treatment modality across all disease stages. However, resistance to radiotherapy frequently results in treatment failure, highlighting the need to identify novel therapeutic targets to improve clinical outcomes.

Methods: The expression of molecule interacting with CasL-2 (MICAL2) was confirmed in cervical cancer tissues and cell lines through western blotting (WB) and immunohistochemistry (IHC).

View Article and Find Full Text PDF

Here, we present a protocol for assessing the impact of a chemogenetic manipulation in a subpopulation of the hypothalamic neurons on aging and lifespan control using a mouse model developed specifically for this purpose. We describe steps for stereotaxic viral injection and assess inter-tissue communication between protein phosphatase 1 regulatory subunit 17 (Ppp1r17)-expressing neurons in the dorsomedial hypothalamus and white adipose tissue. We then detail procedures for lifespan measurements following chemogenetic manipulation in aged mice.

View Article and Find Full Text PDF

Dasatinib and Quercetin Limit Gingival Senescence, Inflammation, and Bone Loss.

J Dent Res

January 2025

Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Cellular senescence has emerged as one of the central hallmarks of aging and drivers of chronic comorbidities, including periodontal diseases. Senescence can also occur in younger tissues and instigate metabolic alterations and dysfunction, culminating in accelerated aging and pathological consequences. Senotherapeutics, such as the combination of dasatinib and quercetin (DQ), are being increasingly used to improve the clinical outcomes of chronic disorders and promote a healthy life span through the reduction of senescent cell burden and senescence-associated secretory phenotype (SASP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!