AbstractSpecies are embedded in complex networks of interdependencies that may change across geographic locations. Yet most approaches to investigate the architecture of this entangled web of life have considered exclusively local communities. To quantify to what extent species interactions change at a biogeographic scale, we need to shed light on how among-community variation affects the occurrence of species interactions. Here we quantify the probability for two partners to interact wherever they co-occur (i.e., partner fidelity) by analyzing the most extensive database on species interaction networks worldwide. We found that mutualistic species show more fidelity in their interactions than antagonistic ones when there is asymmetric specialization (i.e., when specialist species interact with generalist partners). Moreover, resources (e.g., plants in plant-pollinator mutualisms or hosts in host-parasite interactions) show a higher partner fidelity in mutualistic interactions than in antagonistic interactions, which can be explained neither by sampling effort nor by phylogenetic constraints developed during their evolutionary histories. In spite of the general belief that mutualistic interactions among free-living species are labile, asymmetric specialization is very much conserved across large geographic areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/709961 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!