A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Functional or not functional; that's the question: Can we predict the diagnosis functional movement disorder based on associated features? | LitMetric

Background And Purpose: Functional movement disorders (FMDs) pose a diagnostic challenge for clinicians. Over the years several associated features have been shown to be suggestive for FMDs. Which features mentioned in the literature are discriminative between FMDs and non-FMDs were examined in a large cohort. In addition, a preliminary prediction model distinguishing these disorders was developed based on differentiating features.

Method: Medical records of all consecutive patients who visited our hyperkinetic outpatient clinic from 2012 to 2019 were retrospectively reviewed and 12 associated features in FMDs versus non-FMDs were compared. An independent t test for age of onset and Pearson chi-squared analyses for all categorical variables were performed. Multivariate logistic regression analysis was performed to develop a preliminary predictive model for FMDs.

Results: A total of 874 patients were eligible for inclusion, of whom 320 had an FMD and 554 a non-FMD. Differentiating features between these groups were age of onset, sex, psychiatric history, family history, more than one motor phenotype, pain, fatigue, abrupt onset, waxing and waning over long term, and fluctuations during the day. Based on these a preliminary predictive model was computed with a discriminative value of 91%.

Discussion: Ten associated features are shown to be not only suggestive but also discriminative between hyperkinetic FMDs and non-FMDs. Clinicians can use these features to identify patients suspected for FMDs and can subsequently alert them to test for positive symptoms at examination. Although a first preliminary model has good predictive accuracy, further validation should be performed prospectively in a multi-center study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7820982PMC
http://dx.doi.org/10.1111/ene.14488DOI Listing

Publication Analysis

Top Keywords

associated features
12
functional movement
8
features suggestive
8
fmds non-fmds
8
age onset
8
preliminary predictive
8
predictive model
8
fmds
6
features
6
functional functional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!