It is widely acknowledged that clay minerals have detrimental effects on the process of flotation, but the mechanisms involved are still not fully understood. In this work, the effects of montmorillonite, kaolinite, and illite on pyrite flotation were investigated from the perspective of various structures of clay minerals. Flotation tests suggested that the detrimental effect of clay minerals on the flotation of pyrite increased as follows: montmorillonite > kaolinite > illite. With the help of rheology measurements, it was found that montmorillonite significantly increased pulp viscosity, which in turn substantially reduced pyrite recovery and grade. Scanning electron microscopy (SEM) images suggested that montmorillonite formed the "house-of-cards" structure by edge-to-edge and edge-to-face contact, while kaolinite and illite platelets were associated mainly in the face-to-face mode. In addition, it was clearly observed by SEM-energy dispersive spectrometry that montmorillonite and kaolinite coat on the pyrite surfaces, which would lower the surface hydrophobicity of pyrite. Kaolinite covered much larger area of pyrite surface than montmorillonite owing to the positive charge occurring at the exposed aluminum-oxygen octahedral sheet of kaolinite. Although illite has a similar 2:1 structure to montmorillonite, it showed little or no effect on pyrite flotation, which was attributed to its poor swelling nature. These findings shed light on the root cause of the adverse effect of clay minerals on pyrite flotation and are expected to provide theoretical guidance for mitigating the negative effects on flotation caused by clays.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.0c02073 | DOI Listing |
ACS Omega
December 2024
Key Laboratory for Enhanced Oil & Gas Recovery of the Ministry of Education, Northeast Petroleum University, Daqing 163318, Heilongjiang, China.
In alkali/surfactant/polymer (ASP) flooding systems, alkalis react with clay minerals such as Illite, montmorillonite, and kaolinite, leading to reservoir damage and impacting oil recovery rates. Therefore, studying the dissolution effects of strong alkalis on clay minerals is crucial for improving oil recovery. This study uses Illite as a representative clay mineral and employs the ReaxFF reactive force field and molecular dynamics simulations to model its dissolution in NaOH solution.
View Article and Find Full Text PDFData Brief
December 2024
Civil Engineering, University of Kentucky, Lexington, KY 40506, USA.
Increasing atmospheric carbon dioxide (CO) concentrations are impacting the global climate, resulting in significant interest in soil carbon sequestration as a mitigation strategy. While recognized that mineral-associated organic matter (MAOM) in soils is mainly formed through microbial activity, our understanding of microbial-derived MAOM formation processes remains limited due to the complexity of the soil environment. To gain insights into this issue, we incubated fresh soil samples for 45 days with one of three mineral additions: Sand, Kaolinite+Sand, or Illite+Sand.
View Article and Find Full Text PDFSci Total Environ
December 2024
School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, PR China. Electronic address:
CO saline aquifer storage represents a promising strategy for mitigating the environmental impact of greenhouse gas emissions. However, the long-term effects of CO dissolved in formation water on rock minerals remain insufficiently understood. This study utilizes cast thin section analysis, scanning electron microscopy, and energy dispersive spectrometry techniques to perform a comprehensive microscopic investigation on this issue.
View Article and Find Full Text PDFACS Omega
November 2024
Research Institute of Petroleum Exploration and Development, China National Petroleum Corporation, Beijing 100086, China.
In order to explore the microscopic storage mechanism of shale gas in water-bearing pores and its influencing factors, this article first establishes a molecular dynamics model for methane in different types of adsorbents using molecular dynamics simulation and the grand canonical ensemble Monte Carlo methods. These adsorbents include graphene, organic matter (kerogen), brittle minerals (quartz and albite), carbonate minerals (calcite), and clay minerals (illite, kaolinite, and montmorillonite). Then, by analyzing the molecular storage model and density distribution curves of methane in pores, the storage mechanisms of shale gas are analyzed and elucidated.
View Article and Find Full Text PDFJ Environ Manage
November 2024
State Key Laboratory of Water Security for Lake and Watershed, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China. Electronic address:
Soils in the aquatic-terrestrial zone undergo periodic flooding and act as significant carbon sinks. However, the mechanisms governing soil organic carbon (SOC) formation in these zones are not well understood. This study elucidates the effects of periodic flooding on SOC accumulation at the water level drawdown zone of the Three Gorges Reservoir, using lignin phenols and amino sugars as indicators of plant- and microbial-derived carbon.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!