Developing a Model for a siRNA Delivery System by Cancer Implantation into Zebrafish Circulation.

Methods Mol Biol

Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.

Published: April 2021

AI Article Synopsis

  • Zebrafish have emerged as a key model organism for studying drug effectiveness and toxicity due to their transparent bodies, which allow for easy observation.
  • Researchers use zebrafish larvae to test various drug delivery systems, including fluorescently labeled chemicals and nanoparticles.
  • The chapter details how to deliver micelle-based siRNA specifically to cancer cells using zebrafish as a living model.

Article Abstract

In recent decades, zebrafish (Danio rerio) has become a major in vivo model for the evaluation of drug efficacies and toxicities. In the field of drug delivery research, zebrafish larvae are a suitable model for the use of fluorescent-labeled chemicals, nanoparticle, liposome, or micelle-mediated delivery systems because of their transparent body wall. In the current chapter, we describe the method to perform micelle-based siRNA delivery using cancer cells implanted into the circulation of zebrafish.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-0759-6_17DOI Listing

Publication Analysis

Top Keywords

sirna delivery
8
developing model
4
model sirna
4
delivery
4
delivery system
4
system cancer
4
cancer implantation
4
zebrafish
4
implantation zebrafish
4
zebrafish circulation
4

Similar Publications

Following myocardial infarction (MI), the accumulation of CD86-positive macrophages in the ischemic injury zone leads to secondary myocardial damage. Precise pharmacological intervention targeting this process remains challenging. This study engineered a nanotherapeutic delivery system with CD86-positive macrophage-specific targeting and ultrasound-responsive release capabilities.

View Article and Find Full Text PDF

Huntington's disease (HD) is a progressive neurodegenerative disease resulting from a mutation in the huntingtin (HTT) gene and characterized by progressive motor dysfunction, cognitive decline, and psychiatric disturbances. Currently, no disease-modifying treatments are available. Recent research has developed therapeutic agents that may have the potential to directly target the disease pathology, such as gene silencing or clearing the mutant protein.

View Article and Find Full Text PDF

Co-delivery of antioxidants and siRNA-VEGF: promising treatment for age-related macular degeneration.

Drug Deliv Transl Res

January 2025

Pharmaceutical Research and Development, Ezequiel Dias Foundation, Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, CEP 30510-010, Minas Gerais, Brazil.

Current treatments for retinal disorders are anti-angiogenic agents, laser photocoagulation, and photodynamic therapies. These conventional treatments focus on reducing abnormal blood vessel formation in the retina, which, in a low-oxygen environment, can lead to harmful proliferation of endothelial cells. This results in dysfunctional, leaky blood vessels that cause retinal edema, hemorrhage, and vision loss.

View Article and Find Full Text PDF

Nanoparticle-mediated delivery of nucleic acids and proteins into intact plants has the potential to modify metabolic pathways and confer desirable traits in crops. Here we show that layered double hydroxide (LDH) nanosheets coated with lysozyme are actively taken up into the root tip, root hairs and lateral root junctions by endocytosis, and translocate via an active membrane trafficking pathway in plants. Lysozyme coating enhanced nanosheet uptake by (1) loosening the plant cell wall and (2) stimulating the expression of endocytosis and other membrane trafficking genes.

View Article and Find Full Text PDF

Gene therapy has evolved into a pivotal approach for treating genetic disorders, extending beyond traditional methods of directly repairing or replacing defective genes. Recent advancements in nucleic acid-based therapies-including mRNA, miRNA, siRNA, and DNA treatments have expanded the scope of gene therapy to include strategies that modulate protein expression and deliver functional genetic material without altering the genetic sequence itself. This review focuses on the innovative use of plant-derived nanovesicles (PDNVs) as a promising delivery system for these nucleic acids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!